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Abstract

The project involves the comprehension and implementation of state of the art tech-1

niques involved in the estimation of direction of source. We ended implementing2

two state of the art techniques which involves different experimental settings. We3

will discuss about them in the upcoming sections.4

1 Direction of arrival estimation using Information Geometry (1)5

The paper explores the idea of using information geometry as the similarity measure between the6

observations.7

1.1 Description of Matlab files8

There are basically two files. The first file implements the algorithm and plots the spectrum while9

comparing its with state of the art MUSIC and MVDR algorithms, while the second file implements10

the Monte Carlo simulation and compares their performance on different SNR values. Following is11

the description:12

1.1.1 doa.m13

The file implements the signal model and IG algorithm, and compares its spatial spectrum with14

MUSIC and MVDR. MUSIC and MVDR are implemented via in-built phased library functions15

present in MATLAB.16

1.1.2 monte_carlo_doa.m17

The file implements the Monte Carlo simulation for all the three algorithms. The simulation is run18

for different values of SNR depending upon the problem. Sources are kept to 2 in this file.19

1.2 Description of Functions and Modules from MATLAB20

In the paper we had to compare the results of the proposed method IGPencil as against standard21

methods of source angle estimation MUSIC and MVDR. The implementation of MUSIC and MVDR22

is already present in the Phased System Array Toolbox of MATLAB. Functions used in the setup23

model are as follows:24

• phased.ULA : For modelling a uniform linear array (ULA) containing 11 isotropic antennas25

spaced 0.5 meters apart.26
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• sensorsig : For the multichannel signal received by ULA.27

• phased.MVDREstimator : Scans an MVDR beam over the specified region28

• phased.MUSICEstimator : Scans a MUSIC beam over the specified region29

1.3 Steps of Execution30

There have been two major implementations done by us:31

• IGPencil : In this method we need to plot the spectrum of32

f(φ) =
1

(loga(φ)HR̂
−1

xxa(φ))2
, φ ∈ [−π/2, π/2] (1)

and the source angles could be estimated from the maximas of the spectrum.33

• Monte Carlo : We have to run the IGPencil, MUSIC and MVDR models for 1000 different34

signals at a particular SNR which has to be varied in a certain range. Then we plotted the35

the graph of MMSE vs SNR (in dB) for measuring the statistical performance.36

The application of algorithm can be broken down in following steps37

1. Create a uniform linear array model of 11 elements placed at separation of λ/2 with equal38

power of unity. Allocate sources to the desired directions and generate 100 instances of39

signal at each element with desired level of White Gaussian Noise.40

2. Proceed to calculate the energy covariance matrix R̂xx which is just equal to signal ∗41

signalH . This would serve the purpose of true covariance matrix.42

3. For an angle span of [−90◦, 90◦], calculate the IG Pencil function 1 for each degree.43

4. Maximas of the above function will give you the direction of the sources.44

5. Normalize the function and calculate the spatial spectrum, in decibles.45

6. Compare it with algorithms, MUSIC and MVDR (implemented using in-built functions) by46

plotting the spatial spectrum.47

The Monte Carlo simulation and comparisons can be done in following manner.48

1. Create 20 divisions for the range of SNR you want to evaluate. For each chosen SNR in the49

range, generate 100 samples (Monte Carlo samples) of signal. Sources are limited to two in50

thses simulations51

2. Implement all three algorithms and calculate parameters such as estimated angle, variance,52

root mean squared error for each SNR value for each source.53

3. Plot the root mean squared error curve and the estimated angle for each algorithm for each54

source.55

1.4 Experimental Setup56

Set up a uniform linear antenna array of 11 elements spaced 0.5 λ/2 metres apart. For the first57

experiment SNR is kept at 10dB and the sample size at each antenna is kept at 100. For Monte Carlo58

simulations, at each SNR, 100 samples of signal model is generated. We’ll run the code for 4 setups59

with varying number of sources and varying the values of SNR as well.60

1. Generate a set of 10 sources with equal unitary power and uniform separation in degrees61

from range [−60◦60◦] buried under white noise of SNR 10dB and a set of K = 100 time62

snapshots have to be considered.63

2. Take two sources at angles [−20◦30◦] where the noise is varied for the sources. For64

simulations we conduct 1000 Monte Carlo experiments with SNR from range -20dB to65

20dB.66

3. Take two sources at angles [−20◦25◦] where the noise is varied for the sources. For67

simulations we conduct 100 Monte Carlo experiments with SNR from range -5dB to 40dB.68
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4. Lastly take 13 sources with equal unitary power and uniform separation in degrees from69

range [−60◦60◦] buried under white noise of SNR 10dB and a set of K = 100 time snapshots70

have to be considered.71

1.5 Results72

Performing the first experiment in which 10 sources were located at equidistant from each other with73

in the range of [−60◦60◦], we compared the spatial spectrum of all the three algorithms, IG, MUSIC,74

and MVDR as shown in Figure 1. It was found out that the performance of IG method was at par or75

similar to MUSIC and MVDR methods.

Figure 1: Spatial Spectrum Comparison of IG with MUSIC and MVDR when 10 sources are kept
equidistant from [−60◦, 60◦]

76
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To investigate further, we ran Monte Carlo simulations for two sources kept far apart at θ =77

(−20◦, 30◦). The SNR for this experiment was varied between [−20, 20]dB.To measure the perfor-78

mances, we plotted the mean square root error v/s SNR as shown in Figure 2. It can be seen that as79

we increase the SNR, performance of IG exactly follows the MVDR and also, at lower levels it is80

comparable to MUSIC, and MVDR.81

Figure 2: Root Mean square error comparison of Monte Carlo simulation of IG with MUSIC and
MVDR at different SNRs in range (−20, 20) dB when 2 sources are kept far apart at (−20◦, 30◦)
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But, when sources are placed closer at θ = (−20◦,−25◦), and compare the performances for SNR82

range (−5, 40) dB as shown in Figure 3, we found that the error for IG method performed much83

better than MUSIC, or MVDR especially at lower SNR values. Comparing the error graphs of all84

three methods in th figures 4, 5 and 6, the argument that IG provided the better resolution at lower85

SNR values is strengthened.86

Figure 3: Root Mean square error comparison of Monte Carlo simulation of IG with MUSIC and
MVDR at different SNRs in range (−5, 40) dB when 2 sources are kept close at (−25◦, 20◦)
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Figure 4: Error graph: IG pencil method

Figure 5: Error graph: MUSIC

Finally, we increased the number of sources distributed to 13, taken at SNR of 10 dB. MVDR and87

MUSIC even failed to recognize more than 8 sources. But, IG method identified all the sources and88

located them correctly. It can be seen from spatial Spectrum plots in Figure 789
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Figure 6: Error graph: MVDR

Figure 7: Spatial Spectrum Comparison of IG with MUSIC and MVDR when 13 sources are kept in
[−60◦, 60◦]

1.6 Report from MATLAB90

Published report from MATLAB is attached at last.91

7



2 Source tracking using moving microphone arrays for robot audition (2)92

2.1 Description of MATLAB files and functions93

The following files were used while implementing the algorithm:94

2.1.1 calc_distance.m95

Function that takes two matrices as input and returns the maximum of the absolute value of the96

difference between the two.97

2.1.2 complex_gauss.m98

Function that takes point and covariance matrix (as a complex number) as input and returns the99

probability of the point from the circular Gaussian distribution with zero mean and given covariance100

matrix.101

2.1.3 SSP_EM.m102

This file runs the subroutine EM algorithm for at max 50 iterations. It uses certain threshold for the103

convergence. This file assumes following input from file sampler.m[ 2.1.4]104

• microphone position105

• J sampled state(x, y, vx, vy) of particles.(size = 4× J)106

• STFT of the signal recieved by microphones.(size = 2× K; K = no. of frequency bins.)107

• ε to calculate the Γ(t, k) for each instant t and each frequency bin k.108

This subroutine returns probability vector which inturn is used to update weightsw(t)
j . This subroutine109

calls complex_gauss and calc_distance as helper functions.110

2.1.4 sampler.m111

This is the main script for the second paper’s implementation. It defines the 3 parts of the algorithm,112

source motion, sampling possible source positions and updating the weights for the sampled source113

position using SSP_EM function on the convolution of the RIR and STFT of the observed speech114

signal. Then it plots the KDE contour plots for each time step.115

2.1.5 stft.m (3)116

Function takes in the time domain signal values, sampling rate, window, and hop length(here it is the117

same as window length) and outputs the STFT of the given signal. This function has been ported118

from MATLAB File Exchange.119

2.1.6 RIR (4)120

Function has been ported from the RIR library. It computes the RIR for given source-microphone121

geometries when the reverberation time and room dimensions have been supplied.122

2.2 mvnpdf123

Function generates the given number of samples from a multivariate normal distribution with given124

mean and covariance matrix.125

2.3 ksdensity126

Calculates the probability density for given set of sampled points and their corresponding weights127

over a given region using the Kernel Density Estimator. Gives probability density values for the pdf128
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approximated as129

p(s(t)|Z1:t, φy(t, k), φR(t, k)) ≈
j∑

j=1

w̃(j)(t)δŝ(j)(t)(s(t)), (15)

2.4 Steps of Execution130

• We generate the microphone positions from its initial and final positions and the source131

model according to the given equation for a Langevin Model.132

s(t) = F(t)s(t− 1) + u(t), u(t) ∼ N (04×1, Q(t)) (2)

The initial positions for the actual source and the sampled source positions are randomly133

assigned inside the room and a 2s signal from the TIMIT database.134

• For each time step the following actions are taken –135

– The new true source position is sampled from the source model.136

– STFT of the part of signal observed in this time step is generated and convolved with137

the RIR generated for the current source-microphone positions.138

– For each frame of the STFT, we sample the J possible source positions according to139

the source motion model. Then for this J-long set of sampled positions, we calculate140

the weights to approximate the source position distribution using SSP_EM function.141

Note: We also remove the zero valued frequency components from STFT142

– We plot the kernel density contours for the current sampled source positions using the143

ksdensity function.144

2.4.1 EM145

The file assumes some information like speed of sound and sampling frequency, and calculates Γ and146

h. For calculating Γ the diagonal loading factor is taken to be ε = 0.1. It then finds φR,j(t, k) and147

φy,j(t, k) and Φj(t, k) for each of the j and k. Using Φj(t, k) it goes to while loop and finds µ and148

ψ using µ alternately, until convergence. The equations for both of them is given as-149

µ(`−1)(t, k, j) , E[x(t, k, θj)|z(t, k), θ(`−1)] =
ψ
(`−1)
j N c(z(t, k)|02×1,Φj(t, k))∑J

j=1 ψ
(`−1)
j N c(z(t, k)|02×1,Φj(t, k))

and150

ψ
(`)
j =

1

K

K∑
k=1

µ(`−1)(t, k, j)

Finally after convergence it finds the probabilities p(Zt|θ(j)t ) that are returned.151

2.5 Experimental Setup152

• Source, microphone and room params : Experimental setup consist of a 6m × 6m × 3.5m153

dimensional room. The source state is modelled by Langevin motion model. Source position154

is observed after every 0.375s. The 2 microphone start form ([1.35,1,1.5]; [1.65,1,1.5]) and155

are moving in a straight line upto position ([4.85,1,1.5];[5.15,1,1.5]) for 10s. The initial156

positions for the source is selected randomly uniformly from a region which is 1.5m away157

from each of the walls. The source motion model params are v̄ = 1m\s and β = 2.158

• Signal : 10s signal generated from TIMIT database by joining 3 signals and clipping it159

till 10s. However, we analyse only the first 2s of this signal to reduce the time taken for160

computation. fs = 8kHz for the 10s sound signal. For the signals of the timit database,161

sampling is done at 16kHz, so we downsample these signals.162

• RIR params : Speed of sound taken as c = 340 and the reverberation time is 0.5s163

• The number of sampled source positions are J = 100 which has been reduced from that164

mentioned in the paper to reduce computation time. The initialisation for these J points is165

similar to the initialisation of the true source. We do not ignore the sampled points which lie166
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outside the room but count their number and check their value at the end to see how valid167

our assumption was. The model for sampling was same as the source motion model but168

the interval between 2 samplings is now the frame length so the Q and F matrices were169

changed accordingly to accomodate this.170

• STFT params : We set the number of points for STFT as 512 and rectangular window with171

frame length 50ms. We take a hop equal to frame length, thus preventing overlap.172

• We remove all frequency components which have 0 contribution from the STFT as these173

result in singularities when using the SSP_EM procedure.174

• ksdensity is calculated only for the region of the room for 61 points along each axis.175

.176

For EM no extra parameter was required, all the required parameters were known from sampler file.177

The ψ vector of length J was initialized by constant vector of 1/J , Using this vector the alternating178

optimization scheme was initialized. The only assumption taken was to calculate w(j)(t) = w(j)(t−179

1)ψ
(L)
j N c(z(t, k)|02×1,Φj(t, k)) asw(j)(t) = w(j)(t−1)ψ

(L)
j maxk(N c(z(t, k)|02×1,Φj(t, k)).180

We should have taken w(j)(t) = w(j)(t− 1)ψ
(L)
j

∏
kN c(z(t, k)|02×1,Φj(t, k)) but it was giving181

infinite values of weights. The convergence criterion is either 50 iterations of EM or either the182

maximum absolute difference between the elements of µ is less than 0.0001.183

2.6 Results184

The results differ a bit from the actual plots which can be because we have scaled down the problem185

to the level that it has become difficult to obtain convergence. The reductions in maxiter for EM186

algorithm and the length of the sound signal and the number of particles were done to get a reasonable187

computation time on a laptop. Thus, we might not have achieved optimum convergence conditions.188

Our code takes approximately 60 minutes for running.189

Also, the number of points which lie outside the room among the true source positions and the190

sampled source positions are and which shows that some sort of truncation needs to be applied on the191

sampling procedure. We propose that the paper should have used a truncated gaussian (truncated to192

be always inside the room).193

In the EM procedure, we take the maximum of the probability of the K components and not their194

multiplication as it leads to very large values many being Inf, which makes kernel density estimation195

impossible . One workaround for this can be clipping the probability density values to some large196

number but even then, the KDE performance would differ from optimal.197

We thus believe that there were many important implementational details not mentioned in the paper198

and for these we had to make appropriate assumptions to get valid results. Some of these assumptions199

might be different from that made by the authors. Finally, the computational capacity used by the200

authors might be very large of which there is no mention in the paper . Published file from MATLAB201

is attached in the end.202
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Figure 8: distribution of particles at t=0 sec

Figure 9: distribution of particles at t=0.375 sec
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Figure 10: distribution of particles at t=0.75sec

Figure 11: distribution of particles at t=1.125 sec
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Figure 12: distribution of particles at t=1.5 sec
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