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Abstract—We analyse the recently released work in [1],
which employs Hamiltonian dynamics to allow faster con-
vergence rate on a wider class of objectices. The proposed
framework allows for linear rates of convergence on certain
classes of non-strongly convex functions and generalizes
the momentum method to non-classical kinetic energies.
We propose a stochastic variant of one such method,
and sketch its convergence proof. We also implement the
deterministic methods as well as the stochastic counterpart
and compare various facets of the methods with baselines
such as Gradient Descent and Momentum.

I. INTRODUCTION

In recent years, there has been a growing interest in the
study of continuous dynamics to motivate faster and more
robust accelerated methods in various sub-fields of opti-
mization and inference [2]] [1] [3]]. Continuous dynamics
allow us to generalize various classes of optimization and
simulation algorithms by converting the discretization to
a continuous version. The methods then allow for analysis
in this continuous domain.

The recently released work in [[1], employs this method-
ology to analyse classical accelerated Gradient methods
that use first-order gradient information. This results in a
generalization of Polyak’s Heavy Ball Method. The new
suite of algorithms have fast convergence on a wider range
of convex objectives than preciousl possible, hile allowing
for many dgrees of freedom in their tailoring. We analyse
their framework, and also propose our stochastic exten-
sion to their algorithm. We then simulate their algorithms
on functions showing pathological behaviour, and report
our results and interpretations.

A. Hamiltonians

In mechanics, a Hamiltonian system is used to model
the continuous time dynamics of a system acted upon by
a field V f. The total energy of the system is given by —

H(x,p) = k(p) + f(x) — f(x*) )
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Here, x,p,k,f and x represent the posi-
tion,momentum,kinetic energy, potential energy and
potential energy minima position respectively. The
update equations for a Hamiltonian ensure that the
energy is always constant. Hamiltonians have existed in
mechanics for decades but are now being incorporated
into machine learning algorithms with appropriate
discretizations with the most popular application being
Hamiltonian MCMC [4]].

For this paper, a special variant, namely, conformal
Hamiltonian is used to model the system. The continuous
time update equations for such a system are —

X, =
L @)
P, =— V[ (xt) = 7P
This differs from the standard Hamiltonian in only the
(—yp:) term. This acts like a frictional force which
dissipates energy from the Hamiltonian.

’

Hy

(Vk(p).p) + (VFxi).x,)
=7 (VEk(pt), pt) < —7k(p) <0

3)

Note that this convergence requires v > 0,k to be convex
and have minima as k(0) = 0. Also, this formulation
bears resemblance to Polyak’s heavy ball method [5]
whose discretization gives us the momentum schemes
of gradient descent. The conformal Hamiltonian con-
tinuously loses energy and converges to the lowest en-
ergy state (x*,0) under certain assumptions. For specific
design choices of k and f, this convergence has an
exponential rate in continuous time. Note that any other
dissipation field D(p;) satisfying (Vk(p:), D(p:)) < 0
will also lead to a descending Hamiltonian but linear
convergence rates and convergence to minima has not
been investigated.



B. Defining H

Before we state the lemma for the continuous time
convergence rate, we will investigate the formulations of &
and f for our case. Allowing f to be the convex objective
function is an obvious choice. The standard definition for
k has been ‘B:P) where m is the mass. For our case, the

2m °
design of k turns out to be—

)= (R4 E) @

where fo(x) = f(x +x") = f(x7) )

Here f denotes the conjugate function of f.. This design
choice can nice properties which allow us to guarantee
linear convergence in continuous and discrete time. For a
convex f, k is convex and k(0) = 0. An interesting point
to note is that considering the unconstrained optimization
of f as the primal problem, one form of the dual turns
out to be 3 (f*(p) + f*(—p)) and the duality gap turns
out to be exactly equal to the Hamiltonian total energy.
Thus, in some way minimizing the Hamiltonian leads
to reducing the duality gap. This property can be of
paramount importance when we try to extend this to
constrained settings.

We now present the convergence rate for the continuous
time Hamiltonian system with our given definition of
k. Note that the assumptions to guarantee convergence
are stated in the next section where the discrete time
algorithms have been described.

Theorem L1. Given f,k,v,a,Cy, , satisfying assump-
tions A. Let (X¢,pt) be a solution to [2| with initial states
(x0,P0) = (x,0). Let a* = a (3Hp), A = % and
W :[0,00) = [0,00) be the solution of

W, = =A-a (W)W,

with Wy = Ho = f(x0) — f(x*). Then, for every t €
[0, 00), we have

f(x:) — f(x") <2exp (—/\/0 a (QWt)> ©)
<2Hqexp (—Aa’t)

We do not provide a proof for this theorem as our main
focus is on convergence of the discretized algorithms.
The proof proceeds by defining the Lyapunov function
as Vi (x,p) = H (x,p) + B (x —x*,p) and then estab-
lishing V,; < —uV; for some constants p, 3. One of the
initial lemmas used for the proof which relates V and H
will be described later as it is used in the proofs of the
discretized algorithms.

II. METHODS

This section describes the stochastic and non-stochastic
discretized versions of this continuous time Hamitonian,
its convergence rates, their proofs and the assumption.
The stochastic version is our novel contribution and
involves very little modification in the non-stochastic
version. We cover both these cases side by side.

A. Algorithms

The original paper proposes 3 discretization schemes —
1 implicit and 2 explicit. We cover the 2 explicit schemes
as their stochastic analogues were easier to prove.

Algorithm 1 First explicit Method

Require: f7 k? €,7, X0, Po, §= (1 + 76)71
Pr+1 = 0Pt — eV f(x¢)
20 X¢q41 =Xt + €Vk(pt+1)

Algorithm 2 Stochastic First explicit Method

Require: f,k,¢€,v,%0,po,0 = (1 + ’}/6)71
Sample random variables a, b
2 Piy1 = 0Pt — €V fa(x¢t)
Xer1 = X¢ + €VEy(Pig1)

Algorithm 3 Second explicit Method

Require: f, k, ¢, 7v,Xg, Po
Xi11 = Xy + €VEk(py)
2 pry1 = (1 —ey)pr — eV f(x¢t41)

Algorithm 4 Stochastic Second explicit Method

Require: f, k¢, 7v,Xg, Po
Sample random variables a, b
2: Xi+1 = X¢ —+ Eka(pt)
Pit1 = (1 —€y) Pt — €V fa(xty1)

The two explicit methods are discretize the system [2]
on points (X¢, ps+1) and (x¢11, pr) respectively. We will
see later that this small change in discretization allows
us to expand the linear rate of convergence to even non-
smooth and non-strongly convex functions. The stochastic
versions of these algorithms assume that you have a
random realization of the actual gradient.



B. Assumptions

Here S : denotes the stochastic version of the same
constraint.
Assumptions A —

1) f:R% = Ris differentiable and convex with unique
minimum at x*. § : This property holds for each f,
and E [f,] = f has minima at x*.

2) k: RY — R differentiable and strictly convex with
minima k(0) = 0.5 : Assumption holds for each k
and E [ky] = k has minima k(0) = 0.

3) v€(0,1)

4) There exists some differentiable non-increasing con-
vex function a : [0,00) — (0,1] and constant
Co.~ € (0,7] such that for every p € R?

k(p) = a (k(p)) max (fZ(p), fo(=p)) ()

and that for every y € [0, 00)

— Cany@ (y)y < aly) (®)

If k(p) > o*max (f(p), fX(—p)), for a constant
a* € (0,1], then a(y) = o* is a valid choice. S :
For the stochastic version, we use the choice of a
constant « as it made subsequent results easier to
prove. The exact condition required is

E[ko(p)] > a” max (E [f,(p)] . E [fc*,a(—p)]()g)

5) Additionally, for the stochastic case, E[f,] =
LEN] =V E[k] =k E[VE] =k
Assumption B — There exists Cy; € (0,00) such that
vx,p € RY,

(Vf(x), VE(p))| < Criat (x,p)

S : The same condition holds but for functions f,, k; on
expectation,i.e.,

E[[(Vfa(x), VEs(p))[] < CrrE[H (x,p)]

Assumptions C -

(10)

1)

1) There exists Cy € (0,00) such that for every p €
R,

(VEk(p),p) < Crk(p) (12)

E [(Vky(p), p)] < CkE [ky(p)] 13)

2) f is twice continuously differentiable for every
x € R4\ {x*} S : Each f, is twice continuously
differentiable as well.

3) There exists Dy € (0,00) such that for every p €
R x € R\ {x*},
(VE(p), Vf(x)VE(P)) (13)
< Df,koz(37-[ (x,p)) H (x,P))
E [(Vk(p), V*f(x)Vk(p))]

< DpE[aBH o p) H )]

Assumptions D —
1) k is twice continuously differentiable for every p €
R\ {0}
2) Exactly similar to Assumption
3) There exists Dy € (0,00) such that for every p €

R\ {0},
{(p,V?k(p)) < Dyk(p) (16)

<
4) There exists Ey, Fy, € (0,00) such that for every
p,q € RY,

k(p)—k(q) < Exk(p)+Fk (VE(p) — Vk(q),p — q)
A7)
5) There exists Dy € (0,00) such that for every x €
R? p € R?\ {0},

(Vf(x), V’k(p)V f(x))
< Dyra(3H (x,p)) H (%, p))

For convergence of the continuous time formulation As-
sumption A needs to be satisfied, for implicit method A
and B, for first explicit method A, B and C' and for sec-
ond explicit method A, B, D. We will prove convergence
for first explicit method and its stochastic variant only
so the stochastic versions for Assumption D have been
omitted. The assumptions for first explicit method can be
easily satisfied for a quadratic strongly smooth function
and its quadratic version of kinetic energy defined in
previous section. The roles of f and k are interchanged
in the two explicit methods. The first explicit method
requires PSD hessian of f while the second necessitates
the same for k. Since, the objective function f is more or
less fixed but the kinetic energy is somewhat under our
control, we are able to achieve linear convergence through
the second explicit method for f having unbounded or
zero eigenvalues in its Hessian. These assumptions appear
to be too restrictive, but the authors have demonstrated
that when f and k are suitably chosen power functions
according to the definitions in previous section all these
assumptions are satisfied. More specifically, power func-
tions of the form f(z) = %,kj(p) = ‘p—c‘c satisfy these
assumptions when %Jr% = 1. In the experiments section,
we choose functions of this form which satisfy all our
assumptions.

(18)



C. Convergence Analysis

We provide convergence analysis for first explicit
method and its stochastic variant. The proof for the
second explicit method is on similar lines interchanging
the roles of f and k with a few additional steps. The
stochastic version for the first algorithm is also proved
simultaneously.

The proof strategy will involve the following steps —

1y

2)

First, we find the relation between H and V. This is
Lemma 2.3 from []1]]

Theorem IL1. Let x € R, f, : R — R convex
with unique minima at x*, ky, : R4 — R strictly con-
vex with minima k(0) = 0, a € (0,1] and 5 € (0, .
If p € R is such that E [ky(p)] > o [f:yb(—p)j
then

>

Bl w2 B[ (M2 4 10 - 1)
. E[HGp)

“ (19)

PR, p)] <EV(x.p)  (20)

«

If p € R is such that E [ky(p)] > o [ :7b(+p)},
then

i x' ] <2 [ (224 1,0 - £t )|
- ElHxp)
“ @1
PR i, p) >EVp)] (22

The role of Assumptions A is in proving this in-
equality. This is further used to port results from
‘H to V and vice-versa. The non-stochastic variants
don’t have expectations keeping the rest of the result
unchanged. The proof can be obtained by expanding
H

\%’e now try to establish an equation of the form
Vt, < —AV;. In discrete terms, such an equation
would look like

E [Vt+1 — Vt] S —65 [1 — ’)/602] E [Vtﬁ-l} (23)

Note that this equation can be found in Lemma
C.2 in [1f]. The terms inside the square brackets are
positive for some constant C. Such an equation
would admit a linear convergence rate. Also, for

3)

4)

5)

6)

the stochastic case, a constant v admits a constant
8= %a(m&-) and admits a slightly easier proof.
However, expanding the LHS of above equation, we
obtain —

E [Vt+1 — Vt] =K [Ht+1 — Ht]
+ BE [(x¢41 — X", Pr+1)]
— BE[(x¢ — x", pt)]
The next two steps will involve bounding these two
difference terms individually in terms of a constant
multiple of E [H].
Bounding E [#;+1 — H,]. Using convexity and as-
sumption B, this can be simplified to —

E[Hiy1 — He
< —veE [(Vkp(Ptt1), Pri1)]
+E[(Vfa(xt+1) = Via(xt), X141 — X4)]

This part can be found in Proposition 3.3 in [1]]. The
second term on RHS is bounded separately.

Bound on E [<Vfa (Xt+1) - Vfa(Xt)7 Xt41 — Xt>] In
our case, the bound on this term comes out to be —

E[(V fa(xt41) = Vfa(x¢), Xe41 — Xy)]
< 362ny;€aE [7‘[1;+1]

The non-stochastic version has the same structure,
but the non-constant o complicates one of the con-
stant terms of the RHS. The proof of this term is
where we actually switch from continuous to discrete
settings. We define XEQI = x¢ — 1€Vky (Pr41)-
Here ¢ is a continuous variable. We similarly define
Hi, = H(xi 1, Pi+1). We bound the LHS by
integrating ¢ from 0 to 1. We interchange expec-
tations and integrals to obtain our stochastic form.
The bound we obtain is in terms of ;. Then, we
bound H}, ; in terms of H; ;1. This is where we use
Assumption B and Assumption A.

Bound on E[(x;y1 — X", prr1) — (x¢ — X", pt)].
Using convexity and Assumption B, we first obtain
the following result-

E[fa(x¢)] < —f(x¢) + €CrrHisr

This result, along with the convexity of ky, f, and
expanding the update steps, we get the following
bound-

E [(xt+1 — X", Pt+1) — (x¢ — X", Pt)]

< (v+79€) E[(Vko(Pe41), Pes1)] + €Cr Vi

— €E [fa(xt4+1) = fa(x")] — veE [(x¢41, pt+1>(]28)

(24)

(25)

(26)

27)

The remaining terms are components of V' but they
have different coefficients. Thus, we set bounds on



the constants «, [3,, so that it can be upper bounded
in terms of V.

The organization of the original paper and the sequence
in which results are presented are different from what we
have done, but, we believe, this gives a better understand-
ing.

1) Remarks on Stochastic variant: We were able to
apply stochasticity to the analysis of this algorithm due
to the convexity and the assumptions in the original
analysis. We believe that the paper has really strong
assumptions on the behaviour of the functions and these
are essential in guaranteeing convergence. The paper
proposes guidelines on making kinetic energies suitable
to given objective functions, however, due to lack of
time, we cannot comment on the same for the stochastic
case. These methods have not been tested on real world
datasets as the loss functions then might not obey the strict
assumptions and fail to converge. This posed a problem as
minibatching would have been a very easy way to obtain
stochastic gradients. Thus, to experimentally check our
method, we have used a simple noise model similar to
1001[2]. Further, we could work on an appropriate noise
model to meet our strict stochastic assumptions.

III. SIMULATIONS AND EXPERIMENTS

In this section we use our own implementatior|'] of the
algorithms mentioned above with baselines, and plotting
routines to investigate certain aspects of the methods.
Concretely, our simulations focus on the following ques-
tions:

1) What is the dependence of convergence of the first

Explicit Method on +?
2) How do the methods converge with increasing di-

mensionality, and starting points for functions with

different power behavior near zero and far from it?
3) Finally, how does the non-stochastic First Explicit

Method compare to its stochastic counterpart?

A. Convergence of First Explicit method with varying ~

The function used in this case is f(x) = [z() +
x4 [z /2 - 2(3) /2)*, with its corresponding kinetic
energy as k(p) = 2[(p(V)*/3 + (p»)*/3]. Comparisons
with Momentum and Gradient Descent have already been
performed in [[I]]. We present the plot in Figure [I] We have
set the learning rate to ¢ = 0.007.

From the figure, we see that as +y increases, the con-
vergence is faster. Interestingly, although the convergence
proof requires that v be less that 1, we found that larger
values of gamma here allowed for even faster rates of

ICode is available at https://github.com/jaivardhankapoor/ee609

convergence. This is one such case where the convergence
is allowed in spite of this condition.

AAARAAAAAAA
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logf

o 2000 2000 6000 8000 10000
terations

Fig. 1: Convergence of logf with increasing values of ~.

B. Comparing non-stochastic methods

Below we provide an empirical comparison between
First Explicit Method, Second Explicit Method, Mo-
mentum and Gradient Descent. Out primary variables
of change here would be the dimensionality of x, and
the starting point of the optimizer. To look at varying
power behaviours using a single objective, we consider
the function f(x) = ¥2(|Ix|)) = L(||x[|® + 1T — L.
This function exhibits power behaviour of ||x||® near 0
and ||x||? far from it. The kinetic function map of such
a function is k(p) = 2 (||p|+), where A = Z2- and
a = 32, with || - ||, being the dual norm. In this and the
next subsection, we fix B = 8 and b = 2. Also, for this
subsection, € = 0.003,v = 0.9.

Figure 2 shows us the comparison. The first row is
dimensionality 2, while the lower row of plots is dimen-
sionality 16. We see here that for low dimensionality, the
Explicit Methods and Momentum are able to converge,
with similar rates. However Gradient Descent diverges
with a starting point that is far from 0. This may be
explained by overshooting the function due to large
gradient far from 0, while the other 2 methods are able to
mitigate this overshooting eventually using the auxilliary
variable p. With large dimensions, however, (Figure 2(d)-
(f)) we see that even Momentum fails to converge in the
case of large norm starting point. Only the kinetic maps
prescribed by the Explicit methods are able to converge in
high dimensions. We also tested this with 256 dimensions,
and found the observation to be exaggerated from the
previous case.

C. Comparing Stochastic and Non-Stochastic variants of
First Explicit Method

In this subsection we analyse how the stochastic variant
of the First Explicit method performs compared to its
deterministic counterpart. The objective used here is the


https://github.com/jaivardhankapoor/ee609
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Fig. 2: Convergence plots of logf with different dimensions and starting points

same as in Subsection [[TI-A] We specify the noise to be
added to the gradients as V f(x)-s and Vk(p)-s, where s
is sampled from a Gaussian distribution with mean 0 and
variance o2. We test the convergence on a grid of variance
learning rate values, and plot the cases most archetypal
of the behaviour of these methods.

Figure 3| shows the convergence plots of the 2 methods.
We infer that for small o2, the stochastic method with the
above noise formulation does not diverge too much from
the deterministic one. In fact, in a few of the cases we
saw, it even beat the deterministic method by a small
margin. However, for large variance, we see that the
bottom row of the figure clearly shows small to moderate
divergence for small € and large divergence for large e.
We hypothesize this is due to a very simplistic noise
formulation, which we do not know if it satisfies the
assumptions for the stochastic case described previously.
A more hand-crafted noise function might lead to similar
convergence behaviour as the deterministic one.

IV. CONCLUSION

We have analysed both theoretically and experimentally
the facets of the Hamiltonian Gradient Descent. We pro-
posed a stochastic variant to the original formulation and
reproduced the results as well as studying other aspects
like the effect of . Due to space constraint, we had
to skip certain details. The effectiveness of this method

[a]

o

[C] ¢
Fig. 3: Convergence comparison of variants of First
Explicit method with different variance and learning rates.
(@):(0? = 0.1, = 0.003), (b):(¢? = 1,e = 0.003),
©):(c? =1, =0.01), (d):(c? = 1,e = 0.01)

motivates us to further investigate ODE literature and
continuous time methods.
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