
Robustness of Compressed Decentralized SGD with
Gossip communication

Moulik Choraria (moulik.choraria@epfl.ch)
Harshvardhan (harshvardhan.harshvardhan@epfl.ch)

Aditya Vardhan Varre (aditya.varre@epfl.ch)

Abstract—We analyze the ChocoSGD algorithm in a non-
convex setting. We observe the performance characteristics for a
wide class of optimizers. We implement and analyze the efficacy
of various attack and protection schemes for the ChocoSGD
algorithms, for two popular network topologies.

I. INTRODUCTION

Over the last few years, the size of training datasets has
increased rapidly and the ability to learn in a distributed
fashion has become increasingly important. One such setting
is Federated learning, where multiple decentralized devices or
node hold local data samples and learns an algorithm, without
exchanging their data samples and with limited communica-
tion. In these settings, fault tolerance (may be adversarial)
is an important requirement. Compressed SGD methods like
signSGD, in a single aggregate server setting, have been shown
to be fault-tolerant in presence of byzantine nodes in [1].
Ghosh et al. [2] also came up with a communication efficient
learning algorithm with error feedback which is robust to the
presence of byzantine workers for the same.
Recently, the authors of [3] proposed a gossip algorithm based
decentralized stochastic optimization scheme, ChocoSGD, and
proved its convergence for strongly convex objectives. Further,
compressed communication methods like QSGD and signSGD
were also shown to converge in the decentralized networks
in the absence of a single aggregation server using gossip
algorithms. The robustness of this method against byzantine
attacks remains to be investigated.
In this report, we consider the problem of convergence of
ChocoSGD for non-convex functions for various compression
schemes. We also experiment to determine the robustness of
ChocoSGD against adversarial attack by introducing byzantine
nodes into the network. We try to merge these two settings
to analyze fault-tolerance in gossip-style gradient communi-
cation for compressed SGD schemes. We experiment how
known fault-tolerant methods ([1], [4]) can be incorporated
in ChocoSGD. In the following sections, we describe the
theory and intuition behind our experiments and we present
our experiment results and conclusions.

II. THEORY

A. Convergence
We considered the following optimizers for our study:
• signSGD with Error Feedback[5]
• Quantized SGD with lossy quantization[6]
• Error Compensated Quantized SGD [7]

Algorithm 1 Base Gossip Algorithm

for t = 0 to T − 1 do
for each node ComputeNodeGradient()
for each adversarial node ComputeAttackGradient()
Communicate updates to neighbors
Aggregate updates from neighbors
Update node weights from aggregation

end for

B. Design of the Attack

For the byzantine nodes, we implement two adversarial
attacks which are prevalent in literature:

• Full Reversal
• Random Reversal
In the Full Reversal attack, the adversarial node flips the

sign of the gradient from the model, broadcasts the flipped
gradient and trains on the basis of the aggregation of the
flipped gradient and the gradients of its neighbors. In the
random reversal attack, the adversarial node randoms flips the
sign of each coordinate of the gradient as per the Bernoulli
distribution with probability p and broadcasts it. Here too, the
node trains using the aggregate gradients of its local flipped
value and the gradients of its neighbors.

C. Fault tolerant methods

Variable network connectivity due to the gossip-style algo-
rithms should in principle, make the corruption more localized
near the byzantine nodes. Further, compressed communication
along with the byzantine assumption leaves very little scope
for incorporating faults, as can be seen by the robustness
of signSGD under majority vote. Following this idea, we
believe, quantizedSGD, being a compressed gradient scheme,
should also be able to tolerate adversarial corruptness under
a suitable protection scheme, along the lines of majority vote.
We consider various methods which essentially try to remove
outlier gradients. These are described in detail below:

• Majority Vote [1]: This method is specific to signSGD.
We return the majority of signs of neighbors( including
its own, this is same for the remaining methods too).

• Median [4] : For every element of the update vector, we
return the median among all its neighbors.

• Trimmed Mean:[4] For every element of the update
vector, we remove the first and last β fraction of elements,



when ordered element-wise in terms of value and return
the mean of the remaining elements.

• Fractional Mean:[2] We return the mean of the gradients
of the first (1 − β) fraction of neighbors, when ordered
by the L2 norm of the gradients in ascending order.

III. EXPERIMENT SETUP AND RESULTS

In this experimental setup, we considered a distributed
system consisting of 9 worker nodes, with the training
set of MNIST dataset equitably and randomly distributed
across the nodes. The choice of MNIST, being one of the
simplest datasets for image processing learning tasks, allows
us to run extensive experiments for multiple cases in a
reasonable amount of time, and with a reasonable amount of
computational resources. For the model architecture on each
node, we choose a simple variant of LeNet [8].
We run the experiments for two network topologies, with
the nodes being connected according to either the ring or
torus topology. This choice offers us the opportunity to study
two interesting cases, since the ring is relatively sparsely
connected where each node has two neighbours whereas a
torus is more densely connected with each node having four
neighbours each.

(a) Torus (b) Ring

The plots for training and testing loss and accuracies are
recorded for each node. For obtaining the test accuracy of
the system, we use a consensus for all nodes. For reasons
of brevity, we include the plots of one healthy worker node
per experiment. However, we mention the interesting aspects
of training as well as elaborate on effects of the attack on
different nodes, in the subsection where we describe common
trends.
For adversarial attacks, we consider either attacking two or
three nodes at a time. For any attack, we consider byzantine
attacker nodes to be placed such that certain uniformity
conditions are satisfied. For the ring topology, we ensure
that each healthy node has at-most one infected node in
its neighbourhood, while for the torus topology, we ensure
that each healthy node has at-most two infected nodes in its
neighbourhood. Because of this, when we use fractional mean
method for defense, we choose the value of β accordingly.
For ring, we chose the infected nodes such that atleast one
neighbour is not infected hence β in this case would be 1

3 ,
similarly in torus atmost 2 of the 4 neighbours are infected

hence we run it with β = 2
5 .

Note that we only include plots for the optimizers and their
respective attack and defense schemes for which ChocoSGD
is able to ensure that the system trains successfully. For the
cases where the system fails to train, we briefly mention them
in the Conclusions.
Finally, while we implemented the random reversal attack,
we believe that it is just a weaker subset of the full reversal
scheme and hence, we do not run the experiments to evaluate
its effectiveness in the cases where we are able to defend
against full reversal.

A. Base Case

The ChocoSGD algorithm gives convergence proofs for
strongly convex functions. However, the task of training neural
networks is inherently non-convex. Therefore, we first estab-
lish a baseline for various optimizers when the system is
allowed to train without any adversarial attacks. As we can
see from the plots below, we are able to attain substantial test
accuracy for both these architectures for all the optimizers.

(a) Torus (b) Ring

B. Common Trends & Expectations

• We observe that the main difference between the torus
and ring topologies is the number of faulty nodes that a
single healthy node is exposed to. Since ring has lower
exposure for the same number of faulty nodes, we find
that it is easier for ring architectures to handle robustness.
This is expressed in lower number of iterations for the
ring architecture to obtain the test accuracy.

• We observe that the fault has the worst effect on the
model belonging to the faulty node. Thus, even though the
healthy nodes show convergence(around 80% accuracy),
the faulty nodes have drastically smaller accuracy(around
10%). Further, the neighbors of the faulty nodes perform
the worst among all healthy nodes, but not by much
if there is overall convergence. The best performance
among healthiest nodes is obtained for the node which
is at the largest distance from all faulty nodes.

• Increasing the number of faulty nodes should worsen the
overall performance of the network

• The node degree comparison for torus and ring does not
have as straightforward implications when we include
faulty nodes. While higher node degree implies higher
exposure to faults, it also means higher exposure to
healthy nodes to improve performance. We find that
these two effects have different implications for different



settings. When the model converges, the differences due
to higher fault exposure are more likely to appear. Thus,
when we obtain convergence, we should find that rings
perform better than torus. However, in the cases when
we see no convergence, the advantage of having more
correct nodes in the neighborhood should improve our
performance and torus should work better.

C. EF-signSGD

We consider Error-Feedback signSGD across both configu-
rations. For this optimizer, we were able to obtain convergence
even in the presence of adversarial attacks for the protection
scheme of median. [1] is able to establish robustness for
signSGD based on only majority protection scheme. Median
is the equivalent protection scheme for majority when the
gradients are real numbers instead of signs. As is evident,
simple averaging of neighborhood gradients does not converge
in the presence of 2 adversarial nodes spaced equally apart.
Matching our prior intuition, the ring architectures are more
robust and require fewer iterations to reach the same accuracy.
The training accuracy for the healthy node for the ring
architecture is much larger for the 3 node case than the 2
node case, which is a counter-intuitive but nevertheless an
interesting observation. However, despite this huge difference
in training accuracy, we find that the test accuracies for these
two cases are very close to each other for the ring topology. For
torus, higher fault levels perform worse during both training
and consensus test.

Additionally, when we observe no system convergence,
the torus case has higher fluctuations, which highlights the
advantage of having a higher degree and consequently, a higher
number of healthy neighbors.

(a) Ring- healthy node training (b) Ring - Consensus Test

(c) Torus- healthy node training (d) Torus - Consensus Test

D. qSGD

We found that qSGD was not able to converge using
median protection scheme. The problem we faced was that
the adversary nodes often drifted towards regions with high
gradient norms, which influenced the neighbours and as a

result in some cases, we were unable to control the norm of
gradients even for healthy nodes.
We chose the norm-based frac-mean scheme to tackle this
problem.

Inspite of this exploding gradient problem, we find that
qSGD is able to attain similar performances to its EF-signSGD
counterparts in fewer iterations with an appropriate protection
scheme. This may be attributed to the greater degree of
compression in EF-signSGD as compared to qSGD, which
consequently allows qSGD to retain the gradient information
more faithfully.
Firstly, since EF-signSGD augments signSGD, we feel that
the gradient updates for it should have a lower variance than
in case of qSGD and the lossy quantizer. This high variance
may cause median protection scheme to pick updates with
large gradient norms from faulty nodes in case of qSGD.
In contrast to the failing median method, the gradient norm
based schemes of fractional mean, picks gradient updates with
smaller norms and thus, even though it might obtain a smaller
update per iteration than it could have, its updates are not
faulty. This scheme also saves us from very high gradient
updates from faulty nodes. The results here are similar to the
common trends we described above.

(a) Ring - healthy node training (b) Ring - Consensus Test

(c) Torus - healthy node training (d) Torus - Consensus Test

IV. CONCLUSIONS

ChocoSGD appears to be inherently robust to certain attacks
for certain protection schemes. In the random reversal attack
with probabilty 1/2, we found that ChocoSGD with sign
compression and Error-Feedback was robust against it. In
ChocoSGD, the aggregation happens in place, where as for the
fault tolerant methods we used, we finally do some sorting to
eliminate the outliers, as a result of which, the training happens
at a slower pace. Due to the space constraints, we do not
elaborate further into the experiments in which methods were
not robust and we also do not include the results of experiment
involving qSGD with Error-Feedback. While we did observe
robustness for ChocoSGD, we still need to carefully select our
faulty nodes and correction schemes to achieve this robustness.



We believe that our experiments shed some light on how the
sparsity in the graph, positioning of nodes and compression
quality of the optimizer are integral in ensuring robustness.

REFERENCES

[1] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signsgd
with majority vote is communication efficient and fault tolerant,” 2018.

[2] A. Ghosh, R. K. Maity, S. Kadhe, A. Mazumdar, and K. Ramchan-
dran, “Communication-efficient and byzantine-robust distributed learn-
ing,” 2019.

[3] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic
optimization and gossip algorithms with compressed communication,”
2019.

[4] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” 2018.

[5] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” 2019.

[6] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,” in
Advances in Neural Information Processing Systems, 2017, pp. 1709–
1720.

[7] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized
sgd and its applications to large-scale distributed optimization,” 2018.

[8] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.


	Introduction
	Theory
	Convergence
	Design of the Attack
	Fault tolerant methods

	Experiment Setup and Results
	Base Case
	Common Trends & Expectations
	EF-signSGD
	qSGD

	 Conclusions
	References

