
Adaptive Batch sizes for SGD

Harshvardhan

January 24, 2021

1 Introduction

SGD(Robbins and Monro, 1951) has become the optimizer of choice for almost all large scale convex and
even non-convex problems. Due to increased efficiency from parallelized compute resources and the remark-
able efficiency of using batches and instead of single datapoints, most prefer mini-batch SGD. Inspite of its
widespread usage, the presence of noise in SGD prevents the constant step size and constant batch size vari-
ant from reaching the optimal solution, and the final iterate error in this case is a sum of an exponentially
decreasing bias term and a constant noise term(Needell et al., 2014). This has encouraged different step

length strategies like average-SGD(Bach and Moulines, 2013), which guarantees optimal O(σ
2

n) convergence,
where σ2 is the noise variance and n is the number of iterations. Constant step size strategies which detect
this convergence via some test are present in the literature like (Chee and Toulis, 2018) which utilizes Pflug’s
statistic, or (Pesme et al., 2020) which defines a new distance based diagnostic, which is the main attention
of the second half of this paper.

While step length strategies for improving convergence are abundant, batch size control has not been
investigated as thoroughly. The equivalence between step lengths and batch sizes have been discussed in
some settings for deep networks, like for sharpest descent directions in (Jastrzebski et al., 2018), practition-
ers almost always have utilize their inverse relationship,i.e., higher batch sizes and smaller step lengths have
similar effects. Establishing this equivalence for convergence-detection strategies is one of the main contri-
butions of this paper. Optimal batch size strategies, like exponential increase covered in (Friedlander and
Schmidt, 2012) and (Yu and Jin, 2019), are shown to be optimal for SGD as they attain O(1

n) convergence.
However, hyperparameter selection still remains a key area of investigation for these strategies. (Gower et al.,
2019) provides us with a theoretically-optimal batch size ensuring minimum possible total computational
cost for the finite-sum setting of SGD. (Alfarra et al., 2020) explores an adaptive algorithm which learns this
constant optimal batch size for the problem. Most other works on batch size strategies heavily incorporate
heuristics with scarce theoretical grounding, like (Zhao et al., 2020).

Our work from the previous semester(Harshvardhan, 2020) dealt with the extension of (Gower et al.,
2019) to yield theoretically optimal batch size per iteration. We use this work as the starting point. This
work includes extension of previous work to special cases of constant step size and constant batch size.
We show that we are able to obtain exponentially increasing batch size and convergence detection in these
strategies, which have been used in existing literature to obtain optimal convergence results. These serve as
motivation for the analysis of convergence-diagnostic tests of (Pesme et al., 2020), its extension to the batch
size control, and its analysis in low noise cases where it performs poorly. We also define another convergence
diagnostic, gradNorm test, which performs as good as the (Pesme et al., 2020) for most cases, and especially
better in very low noise settings. Finally, we conduct experiments to analyze better support our theoretical
observations.

In the next sections, we define the problem settings and assumptions required to prove our theoret-
ical results. Then, we discuss the notable results from (Goweret al., 2019) and the previous semester’s

1

work(Harshvardhan, 2020) which have been extended here. All the subsequent sections contain work carried
out in this semester.

2 Problem Setting

The optimization problem in the finite-sum settings –

x? = arg min
x∈X

1

n

n∑
i=1

fi(x) (1)

where fi : Rn → R is the value of the objective function evaluated at the ith data point and the optimizers
x ∈ X . The whole dataset contains n datapoints.

We will now define the sampling operations to be used for SGD wrt a sampling vector v sampled from
a distribution D.

Definition 1. A random vector v sampled from a distribution D is called a sampling vector if ED vi =
1,∀i ∈ [n].

Incorporating the sampling of datapoints in the optimization problem results in the following form –

x? = arg min
x∈X

ED fv(x) (2)

where fv(x) :=
1

n

n∑
i=‘1

vifi(x) (3)

Therefore,

ED fv(x) =
1

n

n∑
i=‘1

ED vifi(x) (4)

=
1

n

n∑
i=1

fi(x) (5)

:= f(x) (6)

Thus, Definition 1 ensures that solving (2) solves (1) on expectation. This allows us to specify multiple
sampling distributions for our algorithms by specifying distributions for vi. Further, vi values are used later
for computing smoothness and noise gradient wrt the sampling scheme.

Similarly, we define the stochastic version of the gradient as

∇fv(x) =
1

n

n∑
i=1

vi∇fi(x) (7)

ED∇fv(x) = ∇f(x) (8)

The algorithm used for optimization is SGD whose update equations are given below – where xt is the

iterate, γt is the step length and vt
i.i.d∼ D is the sampling vector at time instant t. In all our analysis, we

take X = Rd

3 Assumptions

These assumptions are required for the convergence analysis for SGD.

2

Algorithm 1 SGD

Initialize x0

for t = 1 to T do
Sample vt ∼ D
xt+1 = xt − γt∇fvt(xt)

end for

Assumption 1. f has a unique global minimizer x? ∈ Rd.

Assumption 2. f is µ-strongly quasi-convex, i.e.,

f(x?) ≥ f(x) + 〈∇f(x),x? − x〉+
µ

2
‖x− x?‖2 (9)

for x ∈ Rd and x? being the global minimizer for f .

Assumption 3. f is L-smooth in expectation with respect to the distribution D, i.e.,

ED [‖∇fv(x)−∇fv(x?)‖2] ≤ 2L(f(x)− f(x?)),∀x ∈ Rd (10)

This is concisely represented as (f,D) ∼ ES(L).

Assumption 4. f has finite gradient(σ2(f,D)) noise wrt the sampling distribution D

σ2 := ED [‖∇fv(x?)‖2] <∞ (11)

As a consequence of these assumptions, we state the following lemma which is directly used in the
convergence analysis.

Lemma 1. For f satisfying Assumptions (3) and (4),

ED
[
‖∇fv(x)‖2

]
≤ 4L(f(x)− f(x?)) + 2σ2 (12)

We will use more assumptions when we discuss various forms of the distribution D and their corresponding
L and σ values. Note that the smoothness and noise variance definitions are now closely dependent on the
sampling scheme. We state another assumption for the smoothness of the individual functions fi.

Assumption 5. Each fi is convex and Mi-smooth, where each Mi ∈ Rd×d is a symmetric positive definite
matrix. This can be stated as –

fi(x + h) ≤ fi(x) + 〈∇fi(x), h〉+
1

2
‖h‖2Mi

(13)

for all x,h ∈ Rd and i ∈ [n], where ‖h‖2Mi
= 〈Mih,h〉

We define the terms L := 1
nλmax

(∑n
i=1 Mi

)
, Lmax := max

i
λmax(Mi), LC = 1

|C|λmax
(∑

i∈C Mi

)
, where

C ⊆ [n]

4 Optimal batch size and optimal batch size per iteration

In this section, we state, without proof, some results about the optimal batch sizes per iteration, which
consist of the first part of our work. We first establish a bound on iterate error for SGD consisting of the
bias and variance terms.

3

Theorem 2. For f satisfying Assumptions (1), (2), (3) and (4), with a constant step length γt = γ ∈ (0, 1
2L]

,with xt being the iterates obtained from SGD, the following inequality holds for all t ≥ 0 –

ED
[
‖xt+1 − x?‖2

]
≤ (1− γµ)ED

[
‖xt − x?‖2

]
+ 2γ2σ2 (14)

Proof. Let Ft be the normal filtration defined until iteration t.

ED
[
‖xt+1 − x?‖2 |Ft

]
≤‖xt − x?‖2 + γ2 ED

[
‖∇fvt(xt)‖

2 |Ft
]
− 2γ ED[〈∇fvt(xt),xt − x?〉 |Ft] (15)

≤‖xt − x?‖2 + γ2 ED
[
‖∇fvt(xt)‖

2 |Ft
]
− 2γ 〈∇f(xt),xt − x?〉 (16)

Using Lemma 1 and µ quasi convexity

≤‖xt − x?‖2 − 2γ
(
f(xt)− f(x?) +

µ

2
‖xt − x?‖2

)
+ γ2

(
4L(f(xt)− f(x?)) + 2σ2

)
(17)

Taking expectation on both sides

ED
[
‖xt+1 − x?‖2

]
≤ (1− γµ)ED

[
‖xt − x?‖2

]
+ 2γ(2γL − 1)ED[f(x)− f(x?)] + 2γ2σ2 (18)

Assuming γ ≤ 1
2L

ED
[
‖xt+1 − x?‖2

]
≤ (1− γµ)ED

[
‖xt − x?‖2

]
+ 2γ2σ2 (19)

Since we have a per iteration optimal batch size, we define two new metrics, which take into account the
batch size. These are the total complexity and progress per computation.

Definition 2. For an SGD optimization(1) running for k iterations with batch size τi in ith iteration to
achieve final iterate error ε, we define total complexity T ?(ε) as –

T ?(ε) =

k∑
i=1

τi (20)

Definition 3. We define average reduction per computation E?(τ) for an SGD step with initial and final
iterate errors ri and ri+1 and batch size τ as

E?(τ) =
ri − ri+1

τ
(21)

The constant optimal batch size (τ?), the corresponding number of iterations to achieve error ε (k?) and
the total complexity (T ?(ε))for (Gower et al., 2019).

τ? = n
Ah − Lmax

Ah − Lmax + nL
(22)

k? =
2AhL

(Ah − Lmax)µ
log

(
2 ‖x0 − x?‖2

ε

)
(23)

T ?(ε) =
2AhnL

µ(Ah − Lmax + nL)
log

(
2 ‖x0 − x?‖2

ε

)
(24)

where Ah = 2
µε h̄. The first important observation is that an optimal batch size exists only when Ah ≥ Lmax

or

ε ≤ 2h̄

µLmax
(25)

When this condition is not satisfied, or when the above optimal batch size is less than 1, the batch size is
taken to be 1.

4

4.1 Optimal batch size per iteration

For the optimal batch size per iteration, we minimize the upper bound for a single step of SGD.

min
γ∈R+

(1− γ1µ)r0 + 2γ2
1σ

2 (26)

This inequality is obtained from (19) which forces γ ≤ 1
2L .

We define rk as an upper bound on the iterate error after k iterations. We obtain the following value for
optimal batch size for the first iteration by minimizing E?(τ) for the first iteration.

τ?0 = n

2h̄
µr0
− Lmax

2h̄
µr0
− Lmax + nL

(27)

For this batch size choice, the upper bound on the next iterate error (r1) is set as the minima of the above
optimization problem. The expressions for r1 and the optimal step size is –

r1 = (1− µ

4L
)r0 +

Lmaxµ
2

8h̄L
r2
0 (28)

γ?1 =
2h̄− Lmaxr0µ

4h̄L
(29)

By using this batch size scheme, we end up with the following theorem bounding

Theorem 3. For f satisfying Assumptions (1), (2), (3) and (4), with batch size in each iteration defined by
(27) and the corresponding step length defined by γi = 1

2Li , where Li is the expected smoothness constant for
the batch size τi, with the initial error r0 satisfying the condition in (25), final iterate error of ε is achieved
in k? iterations

k? ≥ 8h̄L

2h̄µ− Lmaxµ2r0
log

(
r0

ε

)
(30)

T ?(ε) =

k?−1∑
i=0

n

2h̄
µri
− Lmax

2h̄
µri
− Lmax + nL

(31)

where Ark = 2h̄
µrk

Comparing the per iteration optimal batch size and the constant optimal batch size, we obtain distinct
regions where different methods would be suitable.

Let T1, T2 be the the total complexity respectively, for obtaining final error ε using constant optimal
batch size and per iteration optimal respectively.

Theorem 4. The per iteration optimal batch size selection scheme is better than the constant optimal batch
size for all iterations conditions Lemma ?? is satisfied and –

• If nL ≥ Lmax –
1

ε
≤ L(nL− Lmax)(1−D)

Dh̄

(
Lmax
Ar0

+ nL
Ar0−Lmax+nL

) +
µ(Lmax − nL)

2h̄
(32)

• If nL ≤ Lmax –

1

ε
≤ L(Lmax − nL)(1−D)

DLmaxr0

(
Dn

(1−D)(Lmax − nL)
+

2

µ

)
+
µ(Lmax − nL)

2h̄
(33)

where D = 2h̄L(4L−µ)+Lmaxµ
2r0

8h̄L

5

4.2 Implementation Details for Optimal Batch size per iteration

Note that the step length(28) and optimal batch(27) size per iteration depend on the iterate errors in each
step, which are not so readily available during the execution of the algorithm. For this purpose, we will use
a recursion between the step lengths, batch sizes and errors. Consider γi, τi, ri−1 as the step length, batch
size and the error at the start of the ith iteration. Then, from equations (28) and (27),

ri−1 =
2h̄(1− 2γiL)

µLmax
(34)

τi =
2γinLmax

2γiLmax + n(1− 2γiL)
(35)

Using (28)

ri =
h̄(1− 2γiL)

Lmax

[
2

µ
− γi

]
(36)

=⇒ γi+1 = γi

[
1

4L
+

1

µ
− γiµ

2L

]
(37)

This gives us an update scheme in terms of only the step length which is much easier to compute if we know
a valid initial step length and batch size. Note that the initial iterate error is r0 ≤ 2h̄

µLmax
. Before stepping

into this regime, our algorithm advocates using batch size 1. Thus, we can run SGD with batch size 1 until
we get to a sufficiently small iterate error(r0). Given the starting point of the algorithm, we can compute
the number of iterations required to achieve this. After achieving r0 convergence, we can compute the step
length and batch size for the first iteration of the variable batch size scheme using equations (28) and (27).
For the subsequent iterations, we use the recursive relation between step lengths and batch sizes. We keep
doing this until we reach the ε cutoff defined in Theorem 4. If the final iterate error requirement is better
than this cutoff, we choose the cutoff as the initial error and run mini-batch SGD with constant optimal
batch size. Additionally, if we assume that the optimal solution lies in a ball of radius R, our initial error
is bounded by 2R. However, there is one caveat in our implementation. We need the value of r0 to define
the upper bound in Theorem 4, which we do not know. Assuming r0 = 2h̄

µLmax
− δ, for a small δ > 0 can be

used as a very rough approximation.

5 Corner Cases

Our implementation for the optimal batch size per iteration is not of much practical value without the
knowledge of several theoretical properties of the problem like the Lipschitz, convexity constants and noise
variance, which are in general, not available for most problems. To alleviate this problem, we use the optimal
batch per iteration techniques for the special cases – constant batch size and constant step size.

5.1 Constant Step Size

Assume that the step size γ is constant for all the iterations and we have control over only the batch size τ
for each iteration. For such a setting the average reduction per computation, for the ith iteration, becomes –

E?(τ) =
γµri
τ
− 2γ2σ2

τ
(38)

=
1

τ

(
γµri +

2γ2h̄

n

)
− 2γ2h̄

τ2
(39)

6

Note that to maximize E?(τ) wrt τ , we apply first order optimality conditions

dE?(τ)

dτ
=
−1

τ2

(
γµri +

2γ2h̄

n

)
− 4γ2h̄

τ3
= 0 (40)

τ? =

(
µri
4h̄γ

+
1

2n

)−1

(41)

d2E?(τ?)
dτ2

= −γ

(
µri +

2γh̄

n

)(
µri
4h̄γ

+
1

2n

)3

< 0 (42)

5.1.1 Feasbility

We will now investigate the conditions for this solution to be feasible. The first restriction is on the step
length γ. We need γ ≤ 1

2L for all values of τ obtained by our scheme. Thus, γ ≤ 1
2Lmax . L is a decreasing

function of τ and thus attains its maxima at τ = 1, assume the expected smoothness constant corresponding
to this is L1.

The second feasibility condition is on the batch size. Note that the batch size 1 ≤ τ? ≤ n. Thus,

1

n
≤ 1

τ?
≤ 1 (43)

1

n
≤

(
µri
4h̄γ

+
1

2n

)
≤ 1 (44)

2h̄γ

µn
≤ ri ≤

4h̄γ

µ

(
1− 1

2n

)
(45)

Thus, we can use this constant step length and batch size strategy when the iterate error lies in the given

region. For ri ≥ 4h̄γ
µ

(
1− 1

2n

)
, batch size is 1 and for ri ≤ 2h̄γ

µn , batch size is n.

5.1.2 Convergence rates

We will now analyze convergence of mini-batch SGD for this batch size strategy. Further, we assume that
the initial and final iterate errors (r0 and ε respectively), lie in the feasible region described above.

Consider the ith step in SGD,

ri+1 ≤ (1− γµ)ri + 2γ2σ2 (46)

ri+1 ≤ (1− γµ)ri + 2γ2h̄

(
1

τ?
− 1

n

)
(47)

Substituting the value of τ?

ri+1 ≤ (1− γµ)ri + 2γ2h̄

(
µri
4γh̄
− 1

2n

)
(48)

ri+1 ≤ (1− γµ

2
)ri −

γ2h̄

n
(49)

Summing from i = 0 to k − 1

rk ≤ (1− γµ

2
)kr0 −

γ2h̄

n

k−1∑
i=0

(1− γµ

2
)i (50)

rk ≤ (1− γµ

2
)kr0 (51)

7

To achieve ε final error, the number of iterations

k ≥ 2

γµ
log

(
r0

ε

)
(52)

(53)

Thus, the optimal batch size that we obtain is of the form –

τ?k =

(
µr0(1− γµ

2)k

4h̄γ
+

1

2n

)−1

(54)

(55)

This is an exponentially increasing batch size. (Yu and Jin, 2019) use a similar strategy for increasing batch
size exponentially in the distributed settings although they do not show an optimal value for the rate of this
increase. While the terms of L and Lmax no longer appear in our batch size updates, we still require the
values of h̄, µ, r0 for this scheme, making it difficult for practical implementations.

5.2 Constant Batch Size

In this section, we assume that the batch size is constant and we have control over only the step length. Thus,
both L and σ2 are fixed. Then, maximizing the average reduction per computation is same as minimizing
the single step iterate error. Then, for the ith SGD step

min

γi∈

(
0, 1

2L

)(1− γiµ)ri + 2γ2
i σ

2 (56)

This is a quadratic in γ and is minimized at γ?i = min

{
1

2L ,
µri
4σ2

}
. This is a minima of a constant term and

a term dependent on the iterate error. The iterate error when the two terms inside the minima is exactly
equal to the iterate error when the optimal batch size per iteration is the constant batch size τ . The step
length strategy consists of 2 regions–

1. Stage 1 : ri ≥ 2h̄(τ−1)
µ((τ−1)Lmax+nLτ) . We use a constant step length γi = 1

2L for this stage. For a constant

step length, the convergence is linear in this region.

ri+1 ≤

(
1− µ

2L

)
ri +

σ2

2L2
(57)

Summing over i = 0 to k − 1

rk ≤

(
1− µ

2L

)k
r0 +

σ2

µL
(58)

2. Stage 2 : ri ≤ 2h̄(τ−1)
µ((τ−1)Lmax+nLτ) In this region, γi = µri

4σ2 , which is a decreasing step length. The ith

iteration in this region then becomes –

ri+1 ≤

(
1− µri

8σ2

)
ri (59)

8

This quadratic does not have a simple closed form solution for rk in terms of r0, however, we can use
the worst case approximation to obtain an upper bound.

ri+1 ≤

(
1− µε

8σ2

)
ri (60)

Iterating from i = 0 to k − 1

rk ≤

(
1− µε

8σ2

)k
r0 (61)

An important outcome of this analysis is the switching point between stages 1 and 2. This switch happens
when the bias and variance terms are equal. As SGD with constant step size gets stuck when this requirement
is fulfilled, our algorithm, like others in literature notably (Pesme et al., 2020) and (Chee and Toulis, 2018),
where diagnostic tests are used to detect this convergence. With a constant step length, no further progress
is made in the iterate error, after this convergence is reached, so the step length is decreased. We utilize this
result as motivation for the investigation of (Pesme et al., 2020).

6 Using convergence-diagnostics for updating batch sizes

The SGD algorithm(1) can be divided into two phases, the transient phase when the error decreases expo-
nentially because of decrease in the bias((1 − γµ)kr0), and the saturation phase, when the iterate error is

of the same magnitude as the noise variance term (2γσ2

µ). Upon reaching the saturation phase, the iterates

keep oscillating about the minima, due to large noise in the gradient steps. To alleviate this problem, (Chee
and Toulis, 2018) proposes the use of Pflug’s statistic (Ermoliev and Wets, 1988) to detect convergence.
(Pesme et al., 2020) shows the large variance in Pflug’s statistic and proposes a new diagnostic based on
distance from the first iterate. After detecting convergence, (Pesme et al., 2020) proposes decreasing step
size exponentially. This strategy shown to work theoretically for quadratic objectives and experimentally for
most common objective functions. These strategies can be divided into 2 steps –

• Detect Convergence : (Pesme et al., 2020) uses distance-based diagnostic for this purpose. This distance

based diagnostic analyzes the rate of increase of E
[
‖x0 − xt‖2

]
, whose behaviour can be shown to be

exactly opposite to that of E
[
‖xt − x?‖2

]
for quadratic objectives. We later propose another statistic

for this purpose based on the gradient norm, which shows exactly same behaviour as E
[
‖xt − x?‖2

]
for all strongly convex and smooth objectives.

• Decrease Variance term after detection: Since the bottleneck in iterate error is introduced due to
the constant variance term σ2γ

µ , decreasing this term exponentially after every detection allows us to
decrease the iterate error even further. Additionally, exponential decrease ensures that any algorithm

which detects convergence correctly, achieves O(σ
2

n) optimal error, where n is the effective number of
computations. This is best possible error attainable for SGD(Bach and Moulines, 2013). (Pesme et al.,
2020) decreases step sizes exponentially, however, increasing batch sizes should have the same effect on
the variance term. We first prove this theoretically and later verify this via experiments on common
problems.

We first define our diagnostic-based SGD algorithm which increases batch size exponentially.

We now prove that Algorithm 2 achieves O(σ
2

n) error for the final iterate, where n is the total number of
computations. A result of this form has been established for exponentially decreasing step length algorithm
in (Pesme et al., 2020).

9

Algorithm 2 Convergence-Diagnostic SGD : ExpBatch

Require: Starting point x0, step size γ, batch size increase r > 1, initial batch size τ0, Num of datapoints
n
τ ← τ0
for t = 1 to T do

Sample vt ∼ Dτ
{Dτ is the independent sampling distribution with expected batch size τ}
xt+1 = xt − γt∇fvt(xt)
if Convergence Diagnostic then

τ ←

(
1
rτ + 1

n

(
1− 1

r

))−1

end if
end for

Algorithm 3 Convergence-Diagnostic Oracle

Require: γ, µ, σ2
τ , T, r0

Bias ← (1− µγ)T r0

Variance ← 2γσ2
τ

µ

return {Bias < V ariance}

Proposition 1. Under Assumptions (1) to (5), algorithm 2 instantiated with algorithm 3, with r > 1

and γ ∈ (0, 1
2Lτ0

), where Lτ0 is the expected smoothness constant for batch size τ0, r0 = ‖x0 − x?‖2 and

∆t1 = 1
γµ log

(
µr0

2γσ2
τ0

)
, we have for all t ≤ ∆t1 –

E
[
‖xt − x?‖2

]
≤ (1− γµ)tr0 +

2γσ2
τ0

µ
(62)

and for all t > ∆t1–

E
[
‖xt − x?‖2

]
≤

8σ2
τ0γ

r
(t−∆t1)µγ

log(2r) µ
(63)

Further, to achieve an error ε, when ε ≤ 4σ2
τ0
γ

µ , the total gradient evaluations (T), required are –

T ≥ log(2r)τ0r

log(r)γµ(r − 1)

(
8σ2

τ0γ

µε
− 1

)
+
τ0
γµ

log
2r0

ε

T ≥O(
σ2
τ0

ε
) +O(log

2r0

ε
)

(64)

Proof. Let tk be the number of iterations until the kth restart and ∆tk = tk− tk−1. Then, nk =
∑k
k′=1 ∆nk′

and let rt = E
[
‖xt − x?‖2

]
and let σ2

τk
, τk be the noise variance and the batch sizes used from the kth to

(k + 1)th restart. Before the first restart, i.e., t ≤ t1

rt ≤ (1− γµ)tr0 +
2γσ2

τ0

µ
(65)

The first restart is achieved when both the terms in RHS of above equation become equal, thus, ∆t1 =

10

1
γµ log

(
µr0

2γσ2
τ0

)
. Further, rt1 ≤

4γσ2
0

µ After the first restart, i.e., t ≥ ∆t1, assume tk ≤ t ≤ tk+1, then-

rt ≤(1− γµ)t−tkrtk +
2γσ2

τk

µ
(66)

Oracle restarts when the two terms on RHS are equal, thus

∆tk+1 =
1

γµ
log

(
µrtk

2γσ2
τk

)
(67)

Using rtk ≤
4σ2
τk−1

γ

µ

≤ 1

γµ
log

(
σ2
τk−1

σ2
τk

)
(68)

From the update equation of τ , and the definition of σ2 in (4), we obtain σ2
τk

=
σ2
τk−1

r

∆tk+1 ≤
1

γµ
log(2r) (69)

As tk = ∆t1 +
∑k
k′=2 ∆tk′

tk −∆t1 =

k∑
k′=2

∆tk′ ≤
k∑

k′=2

1

γµ
log(2r) (70)

≤k − 1

γµ
log(2r) (71)

k − 1 ≥ (tk −∆t1)γµ

log(2r)
(72)

Since, rtk ≤
4σ2
τk−1

γ

µ

rtk ≤
4γσ2

τ0

r
(tk−∆t1)µγ

log(2r) µ
(73)

We only need to extend this result from tk to a general t ≥ tk. Let A : R→ R, such that A(t) =
4γσ2

τ0

r
tµγ

log(2r) µ
. A

is an exponentially decreasing function in t. Consider two functions – G(t) = (1−γµ)t−tkA(tk−∆t1)+
2γσ2

τk

µ

and H(t) = A(t −∆t1) +
2γσ2

τk

µ . Then, H(tk) = G(tk). As both functions are exponentially decreasing, we
need to check the sign of their gradients at tk.

G′(tk) = log(1− γµ)A(t− tk) ≥ −γµ (74)

H ′(tk) =
− log(r)γµ

log(2r)
(75)

Thus. H ′(tk) ≥ G′(tk), and H(t) ≥ G(t),∀t ≥ tk. Thus, for tk ≤ t ≤ tk+1,

rt ≤G(tk) ≤ H(tk) (76)

≤A(t−∆t1) +
2γσ2

τk

µ
(77)

≤A(t−∆t1) +
4γσ2

τk

µ
(78)

11

By construction,
4γσ2

τk

µ ≤ A(tk+1 − ∆t1), but A(tk+1 − ∆t1) < A(t − ∆t1), for t ≤ tk+1. Thus,
4γσ2

τk

µ ≤
A(t−∆t1). Therefore, for any general t –

rt ≤ 2A(t−∆t1) (79)

Now, we compute the number of gradient computations required for reaching ε error. We consider the case

when atleast one restart has occurred, i.e., ε ≤ 4σ2
τ0
γ

µ . Let t be the number of iterations to reach error ε and
let tk ≤ tk+1,

t−∆t1 ≥
log(2r)

log(r)γµ

(
log

(
8σ2

τ0γ

µε

)
(80)

k ≥
⌊

1

log(r)
log

(
8σ2

τ0γ

µε

)⌋
(81)

Thus, the total number of computations(N) required to reach ε error

T ≥ log(2r)τ0
log(r)γµ

k+1∑
k′=2

rk
′−1 + τ0∆t1 (82)

≥ log(2r)τ0r

log(r)γµ(r − 1)
(rk+1 − 1) + τ0∆t1 (83)

Substituting the values of k and ∆t1

T ≥ log(2r)τ0r

log(r)γµ(r − 1)
(exp

⌈
log

(
8σ2

τ0γ

µε

)⌉
− 1) +

τ0
γµ

log
µr0

2σ2
τ0γ

(84)

T ≥ log(2r)τ0r

log(r)γµ(r − 1)

(
8σ2

τ0γ

µε
− 1

)
+
τ0
γµ

log
2r0

ε
(85)

6.1 Further analysis of Convergence Detection for (Pesme et al., 2020)

In this section, we analyze the distance based metric in (Pesmeet al., 2020). This metric detects convergence

Algorithm 4 Distance Based metric(Pesme et al., 2020)

Require: x0,xt,xt/q, q > 1, thresh ∈ (0, 2]

if n == qk for k in N? then

S ← log‖xt−x0‖2−log‖xt/q−x0‖2
log(t)−log(t/q)

return S < thresh
else

return False
end if

for quadratic objectives. To illustrate this point and investigate certain cases where this may fail, we consider
f(x) = 1

2x
2.We set initial point x0 and noise level σ2 and step length γ, borrowing results from Corollary 15

of (Pesme et al., 2020), we obtain–

|xt − x0|2 = (1− (1− γ)t)2x2
0 +

γσ2

2− γ
(1− (1− γ)2t) (86)

12

For t→∞

|x∞ − x0|2 = x2
0 +

γσ2

2− γ
(87)

For very small γt, using Taylor’s expansion

|xt − x0|2 = x2
0γ

2t2 +
γ2σ2

2− γ
t+ o((tγ)2) (88)

Distance-based diagnostic measures the changeover from large t which is of the form t2 to constant
|x∞ − x0|2, by measuring when the slope of |x∞ − x0|2 v/s t, becomes smaller than a threshold less than 1,
in loglog scale. This test functions properly when the two terms in (86) to be comparable. This depends
on the values of σ2 and r0. After the first restart, r2

0 for the next tests becomes O(γ) and thus, even the
remaining tests perform well. The main problem with this test are the cases when the first positive test is
obtained too far from the optimal. This can be observed when σ2 <<< r2

0. If the first test occurs at xt1
then, if r2

t1 = o(γ), the successive tests become erroneous and we decrease the step length too early. To
better illustrate this, we plot (86) for different σ2.

Figure 1: Slope of |xt − x0|2 for different noise levels

For σ2 = 0, 1, the exponential behaviour of (1 − (1 − γ)t)2 dominates so the slope decreases from 2 to
0. For σ2 = 100, the two terms in (86) are comparable so the slope is not strictly decreasing, but the noise
term still does not dominate. For σ2 = 1000, 105, 1010, the noise term dominates and the slope decreases
from 1 to 0. Thus, for the same threshold, we should expect large separation between the time required
to reach this threshold, however, this separation is very small. In the ideal scenario, if Scott’s test were
to measure bias and variance, then increasing σ2 by 100, would imply that we would need to increase the
number of iterations by 100 times. According to the experiments, if only one of the 2 terms (noise or bias)
starts to dominate in (86), which is mostly observed except for few special cases, the number of iterations
for achieving the same threshold does not change.

6.2 Gradient Norm Test

To overcome problems of (Pesme et al., 2020) for low noise settings, we consider a test based on gradient

norms. We first establish the theoretical basis for our test. Consider E
[
‖xt+1 − xt‖2

]
E
[
‖xt+1 − xt‖2

]
= γ2

t E
[
‖∇fv(xt)‖2

]
(89)

13

Using Lemma 1

E
[
‖xt+1 − xt‖2

]
≤ 4γ2

tL(f(xt)− f(x?)) + 2γ2
t σ

2 (90)

= 4γ2
tLE [fv(xt)− fv(x?)] + 2γ2

t σ
2 (91)

Since f is L-Lipschitz

E
[
‖xt+1 − xt‖2

]
≤ 2γ2

tL2 ‖xt − x?‖2 + 2γ2
t σ

2 (92)

1

γ2
t

E
[
‖xt+1 − xt‖2

]
≤ 2L2 ‖x0‖2 (1− γµ)t + 2σ2

(
1 +
L2γ

µ

)
(93)

Thus, 1
γ2
t
E
[
‖xt+1 − xt‖2

]
is upper bounded by an exponentially decreasing term and a constant term related

to the noise variance. Identifying convergence or when bias is smaller than variance, boils down to identifying
when the rate of decrease of this term is no longer exponential.

The algorithm for a test based on this statistic is shown in (5)

Algorithm 5 GradNorm Based metric

Require: xt,xt+1,xt/q+1,xt/q, q > 1, thresh, γt, γt/q
if n == qk for k in N? then

S ← 2
(log‖xt/q+1−xt/q‖−log‖xt+1−xt‖)+(log γt−log γt/q)

log(t)−log(t/q)

return S < thresh
else

return False
end if

Note that in the cases of small noise (σ2 = 0), gradient norm is upper bounded by an exponentially
decreasing term only and thus the rate of decrease should always stay exponential and we should perform
better than the distance based diagnostic.

7 Experiments

We perform experiments on synthetic data for least squares regression and logistic regression for 4 Algorithms
– 3 choices each for Convergence Test (Distance based, Gradient Norm based, Gradient Norm over window)
and variance term updates (step size decrease, batch size increase). The gradient norm over window
corresponds to Algorithm 5 by taking average over a window of size 4 for the slope.

7.1 Least Squares

We generate n = 106 datapoints iid with dimension d = 20 from N (0, H), where H has eigenvalues (1
k), k ∈

[20] and a randomly selected orthogonal matrix for its eigenvectors. The outputs yi are sampled as yi =<

xi,w
? > +εi, where εi are sampled iid fromN (0, 1) The objective function is f(w) = 1

2 E
[
‖yi− < w,xi >‖2

]
and the initial step length for all cases is γ = 1

2Tr H and initial batch size 10. Further, for Algorithm 4, q = 2,
while q = 2.5 for Algorithm 5. The threshold for both tests is fixed at 1 and batch size and step size are
increased and decreased respectively by a factor of r = 4. Further, for each algorithm, we give a burn-in
time of 64 iterations before the first test.

14

Figure 2: Error for Least squares

We find that batch size increase with gradnorm test window and distance based test with step size
increase perform worse than all other cases which perform similarly.

7.2 Logistic Regression

We generate datapoints similar to previous case. The outputs are sampled from logistic model and the
objective function is f(w) = E [log(1 + exp(−yi < w,xi >)]. Further, we set a burn-in time of 200 iterations
with threshold 1 and r = 2. For distance based diagnostic, q = 1.5 while q = 2 for the gradnorm test and
the step size used is γ = 4

Tr H .

Figure 3: Error for Logistic Regression

Note that it is very difficult to gauge which algorithm performs the best from the given figure, due to
large noise in the later iterations. However, taking into account the noise, we find that all cases perform
equally well.

15

7.3 Distance based diagnostic for low noise settings

In this section, we take a small sample of datapoints generated for least squares experiment and perform
SGD with complete gradient along with an additional noise term sampled iid from N (0, σ2). In this case,
we put σ2 = 0 and compare the two diagnostics controlling only the step length. Burn-in time for both is 50
iterations in these experiments. Further, we vary σ ∈ {0, 10−2, 10−3} and plot the distance based statistic
and its corresponding threshold.

The distance based diagnostic restarts for the no noise case as well and thus, performs worse than our
gradnorm based statistic. Further, for very small noise levels, the plots for the distance based statistic
overlap which validates our hypothesis that for small noise levels, the distance based statistic is indifferent
to the noise levels and all restarts are governed by only the bias term in (86).

(a) Distance based test v/s Gradient Norm Test for
no noise

(b) Slope of statistic for different noise levels - Dis-
tance based diagnostic

Figure 4: Analysis of Distance based Diagnostic:Least Squares

8 Conclusion

By extending the analysis of optimal batch size per iteration from previous semester, to corner cases of
constant step size and constant batch size, we obtained theoretical results corresponding to those in existing
literature, like the exponentially increasing batch size for constant step length and decreasing step length
after convergence for constant batch size. Further, we have tried to utilize the equivalence between step
length and batch size to extend exponential decrease in step size from (Pesme et al., 2020) to exponential
increase in batch size obtaining the same asymptotic convergence for the final iterate error. We analyzed the
poor performance of distance based convergence diagnostic in (Pesme et al., 2020) for low noise levels and
proposed a different gradient norm based convergence diagnostic. Our gradient norm based diagnostic was
able to show similar if not better performance than distance based diagnostic for both step length control and
batch size control for Linear and Logistic regression on synthetic data. We were, however, not able to find
any significant difference between the step length and batch size control strategies, both in theoretical and
experimental results, which further goes to prove their equivalence. The advantage of step length over batch
size or vice versa is still highly dependent on the specifications of the training machines and it’s analysis for
different problem parameters is a direction which we could pursue.

Some more directions which we were not able to pursue were the theoretical proof of the distance based
statistic for strongly convex strongly smooth functions, comparison of gradient norm and distance based
statistic for non-convex problems, better implementation for the per iteration optimal batch size regime or
its corner cases and obtaining theoretically sound hyperparameter values for the two tests.

16

References

Motasem Alfarra, Slavomir Hanzely, Alyazeed Albasyoni, Bernard Ghanem, and Peter Richtarik. Adaptive
learning of the optimal mini-batch size of sgd, 2020.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate o(1/n), 2013.

Jerry Chee and Panos Toulis. Convergence diagnostics for stochastic gradient descent with constant learning
rate. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Re-
search, pages 1476–1485, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR.

Y.M. Ermoliev and R.J.-B. Wets. Numerical Techniques for Stochastic Optimization. Springer-Verlag,
Heidelberg, 1988.

Michael P. Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting. SIAM
Journal on Scientific Computing, 34(3):A1380–A1405, Jan 2012. ISSN 1095-7197. doi: 10.1137/110830629.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter Richtárik.
SGD: General analysis and improved rates. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5200–5209, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Harshvardhan. Analysis of optimal batch sizes for sgd. Semester Project EPFL, 2020.

Stanis law Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos Storkey. On
the relation between the sharpest directions of dnn loss and the sgd step length, 2018.

Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling, and the
randomized kaczmarz algorithm. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1017–1025. Curran
Associates, Inc., 2014.

Scott Pesme, Aymeric Dieuleveut, and Nicolas Flammarion. On convergence-diagnostic based step sizes for
stochastic gradient descent. 2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Statist., 22(3):
400–407, 09 1951. doi: 10.1214/aoms/1177729586.

Hao Yu and Rong Jin. On the computation and communication complexity of parallel SGD with dynamic
batch sizes for stochastic non-convex optimization. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 7174–
7183. PMLR, 2019.

Shen-Yi Zhao, Yin-Peng Xie, and Wu-Jun Li. Stagewise enlargement of batch size for sgd-based learning,
2020.

17

http://proceedings.mlr.press/v84/chee18a.html
http://proceedings.mlr.press/v84/chee18a.html
http://dx.doi.org/10.1137/110830629
http://proceedings.mlr.press/v97/qian19b.html
http://papers.nips.cc/paper/5355-stochastic-gradient-descent-weighted-sampling-and-the-randomized-kaczmarz-algorithm.pdf
http://papers.nips.cc/paper/5355-stochastic-gradient-descent-weighted-sampling-and-the-randomized-kaczmarz-algorithm.pdf
https://doi.org/10.1214/aoms/1177729586
http://proceedings.mlr.press/v97/yu19c.html
http://proceedings.mlr.press/v97/yu19c.html

Optimal Batch size per iteration

Harshvardhan

24 Feb 2020

1 Problem Setting

The optimization problem in the finite-sum settings –

x∗ = arg min
x∈X

1

n

n∑
i=‘1

fi(x) (1)

where fi(x) is the value of the objective function evaluated at the ith data point and X is the domain of all
optimizers x. The whole dataset contains n datapoints.

We will now define the sampling operations to be used for SGD wrt a sampling vector v

Definition 1. A random vector v sampled from a distribution D is called a sampling vector if ED vi =
1,∀i ∈ [n].

Incorporating the sampling of datapoints in the optimization problem results in the following form –

x∗ = arg min
x∈X

ED fv(x) (2)

where fv(x) :=
1

n

n∑
i=‘1

vifi(x) (3)

Definition 1 ensures that solving (2) solves (1) on expectation.
Similarly, we define the stochastic version of the gradient as

∇fv(x) =
1

n

n∑
i=1

vi∇fi(x) (4)

ED∇fv(x) = ∇f(x) (5)

The algorithm used for optimization is SGD whose update equations are given below –

xt+1 = xt − γt∇fvt(xt) (6)

where xt is the iterate, γt is the step length and vt
i.i.d∼ D is the sampling vector at time instant t. In all our

analysis, we take X = Rd

2 Assumptions

These assumptions are required for the convergence analysis for SGD.

Assumption 1. f is µ-strongly quasi-convex, i.e.,

f(x∗) ≥ f(x) + 〈∇f(x),x∗ − x〉+
µ

2
‖x− x∗‖2 (7)

1

Assumption 2. f has a unique global minimizer x∗ ∈ Rd.

Assumption 3. f is L-smooth in expectation with respect to the distribution D, i.e.,

ED [‖∇fv(x)−∇fv(x∗)‖2] ≤ 2L(f(x)− f(x∗)),∀x ∈ Rd (8)

This is concisely represented as (f,D) ∼ ES(L).

Assumption 4.
σ2 := ED [‖∇fv(x∗)‖2] <∞ (9)

The gradient noise σ(f,D) is finite.

As a consequence of these assumptions, we state the following lemma which is directly used in the
convergence analysis.

Lemma 1. For f satisfying Assumptions (3) and (4),

ED
[
‖∇fv(x)‖2

]
≤ 4L(f(x)− f(x∗)) + 2σ2 (10)

We will use more assumptions when we discuss various forms of the distribution D and their corresponding
L and σ values. Note that the smoothness and noise variance definitions are now closely dependent on the
sampling scheme. We state another assumption for the smoothness of the individual functions fi.

Assumption 5. Each fi is convex and Mi-smooth, where each Mi ∈ Rd×d is a symmetric positive definite
matrix. This can be stated as –

fi(x + h) ≤ fi(x) + 〈∇fi(x), h〉+
1

2
‖h‖2Mi

(11)

for all x,h ∈ Rd and i ∈ [n], where ‖h‖2Mi
= 〈Mih,h〉

We define the terms L := 1
nλmax

(∑n
i=1 Mi

)
, Lmax := max

i
λmax(Mi), LC = 1

|C|λmax
(∑

i∈C Mi

)
, where

C ⊆ [n]

3 Results used from (Gower et al., 2019)

3.1 Lemmas and Definitions

Lemma 2. For independent sampling with uniform probabilities with expected batch size τ–

1. The expected smoothness constant is

L ≤L+

(
1

τ
− 1

n

)
Lmax = L+GτLmax (12)

2. The gradient noise is

σ2 =

(
1

τ
− 1

n

)
h̄ = Gτ h̄ (13)

where h̄ = 1
n

∑
i∈[n] ‖∇fi(x∗)‖

2
and Gτ = 1

τ −
1
n .

Definition 2. For an SGD optimization running for k iterations with batch size τi in ith iteration to achieve
final iterate error ε, we define total complexity T ∗(ε) as –

T ∗(ε) =

k∑
i=1

τi (14)

2

3.2 SGD single step expression

Theorem 3. For f satisfying Assumptions (2), (1), (3) and (4), with a constant step length γt = γ ∈ (0, 1
2L]

,with xt being the iterates obtained from SGD, the following inequality holds for all t ≥ 0 –

ED
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)ED

[
‖xt − x∗‖2

]
+ 2γ2σ2 (15)

Proof. Let Ft be the normal filtration defined until iteration t.

ED
[
‖xt+1 − x∗‖2 |Ft

]
≤‖xt − x∗‖2 + γ2 ED

[
‖∇fvt(xt)‖

2 |Ft
]
− 2γ ED[〈∇fvt(xt),xt − x∗〉 |Ft] (16)

≤‖xt − x∗‖2 + γ2 ED
[
‖∇fvt(xt)‖

2 |Ft
]
− 2γ 〈∇f(xt),xt − x∗〉 (17)

≤‖xt − x∗‖2 − 2γ
(
f(xt)− f(x∗) +

µ

2
‖xt − x∗‖2

)
+ γ2

(
4L(f(xt)− f(x∗)) + 2σ2

)
(18)

Taking expectation on both sides

ED
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)ED

[
‖xt − x∗‖2

]
+ 2γ(2γL − 1)ED[f(x)− f(x∗)] + 2γ2σ2 (19)

Assuming γ ≤ 1
2L

ED
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)ED

[
‖xt − x∗‖2

]
+ 2γ2σ2 (20)

In the proof, we utilise the strong smoothness(with expected smoothness constant) and µ − strong
concavity of the objective function.

3.3 Batch size results

The optimal batch size (τ∗), the corresponding number of iterations to achieve error ε (k∗) and the total
complexity (T ∗(ε))for (Gower et al., 2019).

τ∗ = n
Ah − Lmax

Ah − Lmax + nL
(21)

k∗ =
2AhL

(Ah − Lmax)µ
log

(
2 ‖x0 − x∗‖2

ε

)
(22)

T ∗(ε) =
2AhnL

µ(Ah − Lmax + nL)
log

(
2 ‖x0 − x∗‖2

ε

)
(23)

where Ah = 2
µε h̄. The first important observation is that an optimal batch size exists only when Ah ≥ Lmax

or

ε ≤ 2h̄

µLmax
(24)

When this condition is not satisfied, or when the above optimal batch size is less than 1, the batch size is
taken to be 1.

Additionally, differentiating the above terms wrt Ah, we get –

∂τ∗

∂Ah
=

nL

(Ah − Lmax + nL)2
(25)

k (26)

∂T ∗(ε)

∂Ah
=

n2L(nL− Lmax)

µ(Ah − Lmax + nL)2
(27)

3

Thus, the optimal batch size increases with decrease in final iterate error. This provides motivation for the
optimal batch size per iteration result.

4 Optimal Batch size per iteration

For the optimal batch size per iteration, we consider only a single step of SGD as our optimization problem.

min
γ∈R+

(1− γ1µ)r0 + 2γ2
1σ

2 (28)

This inequality is obtained from (20) which forces γ ≤ 1
2L . Assume that rk is an upper bound on the iterate

error after k iterations. In the above optimization problem, we try to minimize r1 to obtain a recursive
relation for rk in terms of rk−1. Solving this recursion would yield the final iterate error rk in terms of the
initial error r0.

We minimize the optimization problem (28) directly in terms of γ1, as it is a quadratic in γ1. We then
impose conditions for selection of a valid step length γ1 to obtain bounds for r1, in terms of r0 and the batch
size. Since the objective is a quadratic in γ1, applying first order conditions gives us the optimal γ1

Differentiating wrt γ1,

−µr0 + 4γ1σ
2 = 0 (29)

=⇒ γ1 =
µr0

4σ2
(30)

Since, we already have the condition that γ1 ≤ 1
2L , and the objective is a quadratic in γ, the minima is

attained at the optimal, if it is in the domain or the end point. Thus, the optimal step length which minimizes
the objective is given by –

γ∗1 = min

{
1

2L
,
µr0

4σ2

}
(31)

Since this is a single step optimization, we need a metric to compare the quality of the two solutions for
γ. Note that total complexity was able to compare the efficiency of two methods achieving the same error
for different batch size regimes. In our case, since we consider only a single iteration, the total complexity
would be just the batch size. But, this might be erroneous, as for a large batch size, we should ideally always
get larger number of computations as well as a larger reduction in error in each step. We will now define a
metric which takes into account this tradeoff.

Definition 3. We define average reduction per computation E∗(τ) for an SGD step with initial and final
iterate errors ri and ri+1 and batch size τ as

E∗(τ) =
ri − ri+1

τ
(32)

The batch size choice which maximizes this metric should be the optimal batch size for the given iteration
as it effectively does the largest amount of work per computation.

For the two cases of step lengths, average reduction per computation takes the form –

E∗(τ) = min

{
µr0

2Lτ
− σ2

τL2
,
µ2r2

0

8σ2τ

}
(33)

The function containing L is an increasing function of τ while the function containing σ2 is a decreasing
function of τ for r0 ≤ 2h̄

µLmax
. To maximize E∗, both the terms inside the minima should be equal, which

implies that both the terms in minima of (31) are equal. Thus, the optimal batch size to achieve this
condition is

τ∗ = n

2h̄
µr0
− Lmax

2h̄
µr0
− Lmax + nL

(34)

4

This is the same as the constant optimal batch size for all iterations, with ε = r0. We will use this
observation later, when we compare the two methods. Again, we need the batch size to be positive so the
following condition holds

r0 ≤
2h̄

µLmax
(35)

The increasing and decreasing nature of functions that we had discussed earlier also hold in this range.
For this batch size choice, the next iterate error and the optimal step size is –

r1 = (1− µ

4L
)r0 +

Lmaxµ
2

8h̄L
r2
0 (36)

γ∗1 =
2h̄− Lmaxr0µ

4h̄L
(37)

We will now analyze the recursion for rk.

Lemma 4. If 0 ≤ r0 ≤ 2h̄
µLmax

, the sequence of positive ri’s defined by the following recursion are strictly
decreasing and converge to 0.

ri+1 ≥ (1− µ

4L
)ri +

Lmaxµ
2

8h̄L
r2
i (38)

Proof. If ri satisfies the above condition,

ri+1 ≤ ri −
µ

4L

2h̄

Lmax
+
Lmaxµ

2

8h̄L

4h̄2

L2
maxµ

2
≤ ri (39)

Thus, if r0 ≤ 2h̄
Lmaxµ

, r1 ≤ r0 ≤ 2h̄
Lmaxµ

and ri ≤ 2h̄
Lmaxµ

,∀i.

Thus if we operate in the above region, our optimal batch size per iteration procedure is decreasing and
converges to zero. This is also the same region, where we can select a non-negative batch size.

We will now try to analyse multiple iterations of the above procedure until we reach the final iterate
error ε.

Theorem 5. For f satisfying Assumptions (2), (1), (3) and (4), with batch size in each iteration defined by
(34) and the corresponding step length defined by γi = 1

2Li , with the initial error r0 satisfying the condition
in Lemma 4, final iterate error of ε is achieved in k∗ iterations

k∗ ≥ 8h̄L

2h̄µ− Lmaxµ2r0
log

(
r0

ε

)
(40)

T ∗(ε) =

k∗−1∑
i=0

n

2h̄
µri
− Lmax

2h̄
µri
− Lmax + nL

(41)

Proof. From Lemma 4

ri+1 ≥ (1− µ

4L
)ri +

Lmaxµ
2

8h̄L
r2
i (42)

Since ri ≤ r0, we can set ri+1 to following ∀i

ri+1 =

(
1− µ

4L
+
Lmaxµ

2r0

8h̄L

)
ri (43)

5

Iterating from i = 0 to k∗ − 1

rk∗ = (1− µ

4L
+
Lmaxµ

2r0

8h̄L

)k
r0 (44)

=⇒ k∗ log

(
1

1− µ
4L + Lmaxµ2r0

8h̄L

)
≥ log

(
r0

ε

)
(45)

k∗ ≥ 8h̄L

2h̄µ− Lmaxµ2r0
log

(
r0

ε

)
(46)

(47)

In the last inequality, we use the identity log

(
1
ρ

)
≥ 1− ρ for 0 < ρ ≤ 1. T ∗(ε) is simply sum of batch sizes

till k∗ iterations.

The form of the batch size and number of iterations to reach ε error are very similar for (Gower et al., 2019)
and the per iteration optimal, however, the total complexity, which is the main metric used for comparison,
differs a lot.

5 Constant optimal v/s Per iteration optimal

Let τε, k1, T1 be the optimal batch size, total number of iterations and the total complexity respectively, for
obtaining ε in (Gower et al., 2019). Then, the per iteration optimal has batch sizes τr0 , τr1 , . . . , τε. Let k2

and T2 be its corresponding number of iterations and total complexity for obtaining ε final iterate error.
Then one can easily observe the following relationships –

τri ≤ τε∀ri ≥ ε (48)

k2 ≥ k1 (49)

The batch size is a decreasing function of iterate error as shown in previous sections. Thus, the per optimal
method uses smaller batch sizes for each of its computations but uses approximately larger number of
iterations to achieve the same error. Thus, in the per iteration optimal, with more iterations, the error
decreases and the batch size for the iteration increases, and after achieving ε error, the optimal batch size for
the next iteration is same as the constant optimal batch size used to get to that error. These inequalities,
however, do not differentiate one of the two methods to be better than the other, so we still need to analyze
the total complexity.

But the total complexity for iteration optimal does not have a closed form which we can use. In the
remainder of this section, we try to find the conditions where choosing the batch size every iteration is more
computationally efficient. For this, we will find an upper bound for T2 and and a lower bound for T1.

Lemma 6. • For nL ≥ Lmax –

T2 ≤
nD

1−D
· 1

nL− Lmax

(
Lmax

(
Aε −Ar0
Ar0

)
+ nL

(
Aε −Ar0

Ar0 − Lmax + nL

))
(50)

• For L ≤ Lmax

T2 ≤
nD

1−D
· 1

Lmax − nL

(
Lmax

(
Aε −Ar0
Ar0

)
− nL

(
Aε −Ar0

Aε − Lmax + nL

))
(51)

where Ar = 2h̄
µr and D = 2h̄L(4L−µ)+Lmaxµ

2r0
8h̄L

6

Proof. T2 can be expressed in terms of the function Ar.

T2 =

k2−1∑
i=0

n
Ari − Lmax

Ari − Lmax + nL
(52)

=

k2−1∑
i=0

n
Ari − Lmax

Ari − Lmax + nL

Ari+1
−Ari

Ari+1
−Ari

(53)

≤
k2−1∑
i=0

n
Ari − Lmax

Ari − Lmax + nL

Ari+1
−Ari

Ari(
1
D − 1)

(54)

where D = 2h̄L(4L−µ)+Lmaxµ
2r0

8h̄L

≤ nD

1−D

(
1

Ari
− nL 1

Ari(Ari − Lmax + nL)

)
(Ari+1 −Ari) (55)

≤ nD

1−D

(
1

Ari
− nL

nL− Lmax

(
1

Ari
− 1

(Ari − Lmax + nL)

))
(Ari+1

−Ari) (56)

(57)

The term D depends only on r0 and is always less than 1 so 1 − D is always positive Note that this is a
discrete sum lower bound to the integral in terms of Ar.

T2 ≤
nD

1−D

∫ Aε

Ar0

1

nL− Lmax

(
Lmax
Ar

+
nL

Ar − Lmax + nL

)
dAr (58)

≤ nD

1−D
· 1

nL− Lmax

(
Lmax log

(
Aε
Ar0

)
+ nL log

(
Aε − Lmax + nL

Ar0 − Lmax + nL

))
(59)

Now, we consider the two cases –

• Case 1 : nL ≥ Lmax Since Aε > Ar0 , we use the identity log(1 + x) ≤ x.

T2 ≤
nD

1−D
· 1

nL− Lmax

(
Lmax

(
Aε −Ar0
Ar0

)
+ nL

(
Aε −Ar0

Ar0 − Lmax + nL

))
(60)

• Case 2 : nL ≤ Lmax

T2 ≤
nD

1−D

(
1

Ari
+

nL

Lmax − nL

(
1

Ari
− 1

(Ari − Lmax + nL)

))
(Ari+1 −Ari) (61)

≤ nD

1−D
· 1

Lmax − nL

(
Lmax log

(
Aε
Ar0

)
− nL log

(
Aε − Lmax + nL

Ar0 − Lmax + nL

))
(62)

Here we use log(1 + x) ≤ x and log(1
ρ ≥ 1− ρ, 0 < ρ ≤ 1

≤ nD

1−D
· 1

Lmax − nL

(
Lmax

(
Aε −Ar0
Ar0

)
− nL

(
Aε −Ar0

Aε − Lmax + nL

))
(63)

The next lemma lower bounds T1

Lemma 7.

T1 ≤
2nL(Aε −Ar0)

µ(Aε − Lmax + nL
(64)

7

Proof.

T1 ≥
2AεnL

µ(Aε − Lmax + nL)
log

(
Aε
Ar0

)
(65)

≥ 2AεnL

µ(Aε − Lmax + nL)

(
Aε −Ar0

Aε

)
(66)

≥ 2nL(Aε −Ar0)

µ(Aε − Lmax + nL
(67)

The second inequality is obtained from identity log(1
ρ) ≥ 1− ρ.

To now obtain the region where the per iteration variant is better, we find conditions such that the lower
bound of T1 is larger than the upper bound of T2. We use bounds that are both multiples of (Aε − Ar0 , so
these terms cancel out.

Theorem 8. The per iteration optimal batch size selection scheme is better than the constant optimal batch
size for all iterations conditions Lemma 4 is satisfied and –

• If nL ≥ Lmax –
1

ε
≤ L(nL− Lmax)(1−D)

Dh̄

(
Lmax
Ar0

+ nL
Ar0−Lmax+nL

) +
µ(Lmax − nL)

2h̄
(68)

• If nL ≤ Lmax –

1

ε
≤ L(Lmax − nL)(1−D)

DLmaxr0

(
Dn

(1−D)(Lmax − nL)
+

2

µ

)
+
µ(Lmax − nL)

2h̄
(69)

Proof. By comparing the two bounds from Lemmas 6 and 7, we get –

Case 1 : nL ≥ Lmax.

D

1−D
· 1

nL− Lmax

(
Lmax
Ar0

+
nL

Ar0 − Lmax + nL

)
≤ 2L

µ(Aε − Lmax + nL
(70)

=⇒ 1

ε
≤ L(nL− Lmax)(1−D)

Dh̄

(
Lmax
Ar0

+ nL
Ar0−Lmax+nL

) +
µ(Lmax − nL)

2h̄

(71)

•• Case 2 : nL ≤ Lmax

D

1−D
· 1

Lmax − nL

(
Lmax
Ar0

− nL

Aε − Lmax + nL

)
≤ 2L

µ(Aε − Lmax + nL)
(72)

=⇒ D

1−D
· Lmax
(Lmax − nL)Ar0

≤ L

µ(Aε − Lmax + nL)

(
Dn

(1−D)(Lmax − nL)
+

2

µ

)
(73)

=⇒ 1

ε
≤ L(Lmax − nL)(1−D)

DLmaxr0

(
Dn

(1−D)(Lmax − nL)
+

2

µ

)
+
µ(Lmax − nL)

2h̄
(74)

These conditions show that until some small cutoff is reached the per iteration technique is better. If the
desired error is still smaller than this cutoff, we use a constant batch size after the cutoff.

8

• Large Error(≥ 2h̄
µLmax

) : For this region, taking simple SGD steps (batch size =1) is the most optimal
strategy. Being so far from the optimal, even with very noisy steps, we are able to get good reduction
in the error per computation.

• Moderate Error : For this region, the optimal batch size should be chosen at every iteration. This
strikes a balance between error reduction and computational cost and as the error decreases, we keep
increasing the batch size to maintain this balance.

• Small Error : Here, the error is too small to maintain the balance in the previous region and we jump to
a large batch size based on the final error to maximize our error reduction at the cost of computation.

6 Implementation Details for Optimal Batch size per iteration

Note that the step length(36) and optimal batch(34) size per iteration depend on the iterate errors in each
step, which are not so readily available during the execution of the algorithm. For this purpose, we will use
a recursion between the step lengths, batch sizes and errors. Consider γi, τi, ri−1 as the step length, batch
size and the error at the start of the ith iteration. Then, from equations (36) and (34),

ri−1 =
2h̄(1− 2γiL)

µLmax
(75)

τi =
2γin

2γi + n(1− 2γiL)
(76)

Now, using the Lemma 4,

ri =
h̄(1− 2γiL)

Lmax

[
2

µ
− γi] (77)

=⇒ γi+1 = γi

[
1

4L
+

1

µ
− γiµ

2L
] (78)

This gives us an update scheme in terms of only the step length which is much easier to compute if we know
a valid initial step length and batch size. Note that the initial iterate error is r0 ≤ 2h̄

µLmax
. Before stepping

into this regime, our algorithm advocates using batch size 1. Thus, we can run SGD with batch size 1 until
we get to a sufficiently small iterate error(r0). Given the starting point of the algorithm, we can compute
the number of iterations required to achieve this. After achieving r0 convergence, we can compute the step
length and batch size for the first iteration of the variable batch size scheme using equations (36) and (34).
For the subsequent iterations, we use the recursive relation between step lengths and batch sizes. We keep
doing this until we reach the ε cutoff defined in Theorem 8. If the final iterate error requirement is better
than this cutoff, we choose the cutoff as the initial error and run mini-batch SGD with constant optimal
batch size. Additionally, if we assume that the optimal solution lies in a ball of radius R, our initial error is
bounded by 2R.

9

References

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter Richtárik.
SGD: General analysis and improved rates. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5200–5209, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

10

http://proceedings.mlr.press/v97/qian19b.html

